Cpplib Internals

For ccc version 7.2.0

(GNU MCU Eclipse RISC-V Embedded GCC\x2C 64-bits)

Neil Booth

Copyright (©) 2000-2017 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

Table of Contents

Conventions..............t .. 1
The Lexer ... 3
OV VIBW .« o ettt 3
Lexing a token 3
Lexing a line 5
Hash Nodes........ ..., 9
Macro Expansion Algorithm 11
Internal representation of macros............. il 11
Macro eXpansion OVETVIEWvvtt ittt 11
Scanning the replacement list for macros to expand................. 12
Looking for a function-like macro’s opening parenthesis............. 13
Marking tokens ineligible for future expansion 13
Token Spacing 15
Line numbering............... 17
Just which line number anyway? i 17
Representation of line numbers............. oL 17
The Multiple-Include Optimization.............. 19
File Handling 21

Concept Index...................................... 23

Conventions 1

Conventions

cpplib has two interfaces—one is exposed internally only, and the other is for both internal
and external use.

The convention is that functions and types that are exposed to multiple files internally
are prefixed with ‘_cpp_’, and are to be found in the file ‘internal.h’. Functions and
types exposed to external clients are in ‘cpplib.h’; and prefixed with ‘cpp_’. For historical
reasons this is no longer quite true, but we should strive to stick to it.

We are striving to reduce the information exposed in ‘cpplib.h’ to the bare minimum
necessary, and then to keep it there. This makes clear exactly what external clients are
entitled to assume, and allows us to change internals in the future without worrying whether
library clients are perhaps relying on some kind of undocumented implementation-specific
behavior.

The Lexer 3

The Lexer

Overview

The lexer is contained in the file ‘lex.c’. It is a hand-coded lexer, and not implemented
as a state machine. It can understand C, C++ and Objective-C source code, and has been
extended to allow reasonably successful preprocessing of assembly language. The lexer does
not make an initial pass to strip out trigraphs and escaped newlines, but handles them
as they are encountered in a single pass of the input file. It returns preprocessing tokens
individually, not a line at a time.

It is mostly transparent to users of the library, since the library’s interface for obtaining
the next token, cpp_get_token, takes care of lexing new tokens, handling directives, and
expanding macros as necessary. However, the lexer does expose some functionality so that
clients of the library can easily spell a given token, such as cpp_spell_token and cpp_
token_len. These functions are useful when generating diagnostics, and for emitting the
preprocessed output.

Lexing a token

Lexing of an individual token is handled by _cpp_lex_direct and its subroutines. In its
current form the code is quite complicated, with read ahead characters and such-like, since
it strives to not step back in the character stream in preparation for handling non-ASCII
file encodings. The current plan is to convert any such files to UTF-8 before processing
them. This complexity is therefore unnecessary and will be removed, so I'll not discuss it
further here.

The job of _cpp_lex_direct is simply to lex a token. It is not responsible for issues like
directive handling, returning lookahead tokens directly, multiple-include optimization, or
conditional block skipping. It necessarily has a minor role to play in memory management
of lexed lines. I discuss these issues in a separate section (see [Lexing a line|, page 5).

The lexer places the token it lexes into storage pointed to by the variable cur_token,
and then increments it. This variable is important for correct diagnostic positioning. Unless
a specific line and column are passed to the diagnostic routines, they will examine the 1line
and col values of the token just before the location that cur_token points to, and use that
location to report the diagnostic.

The lexer does not consider whitespace to be a token in its own right. If whitespace
(other than a new line) precedes a token, it sets the PREV_WHITE bit in the token’s flags.
Each token has its 1ine and col variables set to the line and column of the first character of
the token. This line number is the line number in the translation unit, and can be converted
to a source (file, line) pair using the line map code.

The first token on a logical, i.e. unescaped, line has the flag BOL set for beginning-of-line.
This flag is intended for internal use, both to distinguish a ‘# that begins a directive from
one that doesn’t, and to generate a call-back to clients that want to be notified about the
start of every non-directive line with tokens on it. Clients cannot reliably determine this
for themselves: the first token might be a macro, and the tokens of a macro expansion do
not have the BOL flag set. The macro expansion may even be empty, and the next token on
the line certainly won’t have the BOL flag set.

4 The GNU C Preprocessor Internals

New lines are treated specially; exactly how the lexer handles them is context-dependent.
The C standard mandates that directives are terminated by the first unescaped newline
character, even if it appears in the middle of a macro expansion. Therefore, if the state
variable in_directive is set, the lexer returns a CPP_EOF token, which is normally used to
indicate end-of-file, to indicate end-of-directive. In a directive a CPP_EOF token never means
end-of-file. Conveniently, if the caller was collect_args, it already handles CPP_EOF as if
it were end-of-file, and reports an error about an unterminated macro argument list.

The C standard also specifies that a new line in the middle of the arguments to a macro
is treated as whitespace. This white space is important in case the macro argument is
stringized. The state variable parsing_args is nonzero when the preprocessor is collecting
the arguments to a macro call. It is set to 1 when looking for the opening parenthesis
to a function-like macro, and 2 when collecting the actual arguments up to the closing
parenthesis, since these two cases need to be distinguished sometimes. One such time is
here: the lexer sets the PREV_WHITE flag of a token if it meets a new line when parsing_
args is set to 2. It doesn’t set it if it meets a new line when parsing_args is 1, since then
code like

#define foo() bar
foo
baz
would be output with an erroneous space before ‘baz’:
foo
baz

This is a good example of the subtlety of getting token spacing correct in the preproces-

sor; there are plenty of tests in the testsuite for corner cases like this.

The lexer is written to treat each of ‘\r’, ‘\n’, ‘\r\n’ and ‘\n\r’ as a single new line
indicator. This allows it to transparently preprocess MS-DOS, Macintosh and Unix files
without their needing to pass through a special filter beforehand.

We also decided to treat a backslash, either ‘\’ or the trigraph ‘?7/’, separated from one
of the above newline indicators by non-comment whitespace only, as intending to escape the
newline. It tends to be a typing mistake, and cannot reasonably be mistaken for anything
else in any of the C-family grammars. Since handling it this way is not strictly conforming
to the ISO standard, the library issues a warning wherever it encounters it.

Handling newlines like this is made simpler by doing it in one place only. The function
handle_newline takes care of all newline characters, and skip_escaped_newlines takes
care of arbitrarily long sequences of escaped newlines, deferring to handle_newline to
handle the newlines themselves.

The most painful aspect of lexing ISO-standard C and C++ is handling trigraphs and
backlash-escaped newlines. Trigraphs are processed before any interpretation of the meaning
of a character is made, and unfortunately there is a trigraph representation for a backslash,
so it is possible for the trigraph ‘??/’ to introduce an escaped newline.

Escaped newlines are tedious because theoretically they can occur anywhere—between
the ‘+’ and ‘=’ of the ‘+=’" token, within the characters of an identifier, and even between
the ‘¢’ and ‘/’ that terminates a comment. Moreover, you cannot be sure there is just
one—there might be an arbitrarily long sequence of them.

So, for example, the routine that lexes a number, parse_number, cannot assume that it
can scan forwards until the first non-number character and be done with it, because this

The Lexer 5

could be the ‘\’ introducing an escaped newline, or the ‘?’ introducing the trigraph sequence
that represents the ‘\’ of an escaped newline. If it encounters a ‘?’ or ‘\’, it calls skip_
escaped_newlines to skip over any potential escaped newlines before checking whether the
number has been finished.

Similarly code in the main body of _cpp_lex_direct cannot simply check for a ‘=" after
a ‘+’ character to determine whether it has a ‘+=’ token; it needs to be prepared for an
escaped newline of some sort. Such cases use the function get_effective_char, which
returns the first character after any intervening escaped newlines.

The lexer needs to keep track of the correct column position, including counting tabs as
specified by the ‘~ftabstop=" option. This should be done even within C-style comments;
they can appear in the middle of a line, and we want to report diagnostics in the correct
position for text appearing after the end of the comment.

Some identifiers, such as __VA_ARGS__ and poisoned identifiers, may be invalid and re-
quire a diagnostic. However, if they appear in a macro expansion we don’t want to complain
with each use of the macro. It is therefore best to catch them during the lexing stage, in
parse_identifier. In both cases, whether a diagnostic is needed or not is dependent upon
the lexer’s state. For example, we don’t want to issue a diagnostic for re-poisoning a poi-
soned identifier, or for using __VA_ARGS__ in the expansion of a variable-argument macro.
Therefore parse_identifier makes use of state flags to determine whether a diagnostic
is appropriate. Since we change state on a per-token basis, and don’t lex whole lines at a
time, this is not a problem.

Another place where state flags are used to change behavior is whilst lexing header
names. Normally, a ‘<’ would be lexed as a single token. After a #include directive,
though, it should be lexed as a single token as far as the nearest ‘>’ character. Note that
we don’t allow the terminators of header names to be escaped; the first ‘"’ or ‘>’ terminates
the header name.

Interpretation of some character sequences depends upon whether we are lexing C, C++
or Objective-C, and on the revision of the standard in force. For example, ‘::’ is a single
token in C++, but in C it is two separate ‘:’ tokens and almost certainly a syntax error.
Such cases are handled by _cpp_lex_direct based upon command-line flags stored in the
cpp_options structure.

Once a token has been lexed, it leads an independent existence. The spelling of numbers,
identifiers and strings is copied to permanent storage from the original input buffer, so a
token remains valid and correct even if its source buffer is freed with _cpp_pop_buffer.
The storage holding the spellings of such tokens remains until the client program calls
cpp-destroy, probably at the end of the translation unit.

Lexing a line

When the preprocessor was changed to return pointers to tokens, one feature I wanted
was some sort of guarantee regarding how long a returned pointer remains valid. This is
important to the stand-alone preprocessor, the future direction of the C family front ends,
and even to cpplib itself internally.

Occasionally the preprocessor wants to be able to peek ahead in the token stream. For
example, after the name of a function-like macro, it wants to check the next token to see
if it is an opening parenthesis. Another example is that, after reading the first few tokens

6 The GNU C Preprocessor Internals

of a #pragma directive and not recognizing it as a registered pragma, it wants to backtrack
and allow the user-defined handler for unknown pragmas to access the full #pragma token
stream. The stand-alone preprocessor wants to be able to test the current token with the
previous one to see if a space needs to be inserted to preserve their separate tokenization
upon re-lexing (paste avoidance), so it needs to be sure the pointer to the previous token is
still valid. The recursive-descent C++ parser wants to be able to perform tentative parsing
arbitrarily far ahead in the token stream, and then to be able to jump back to a prior
position in that stream if necessary.

The rule I chose, which is fairly natural, is to arrange that the preprocessor lex all tokens
on a line consecutively into a token buffer, which I call a token run, and when meeting an
unescaped new line (newlines within comments do not count either), to start lexing back
at the beginning of the run. Note that we do not lex a line of tokens at once; if we did that
parse_identifier would not have state flags available to warn about invalid identifiers
(see [Invalid identifiers], page 5).

In other words, accessing tokens that appeared earlier in the current line is valid, but
since each logical line overwrites the tokens of the previous line, tokens from prior lines are
unavailable. In particular, since a directive only occupies a single logical line, this means
that the directive handlers like the #pragma handler can jump around in the directive’s
tokens if necessary.

Two issues remain: what about tokens that arise from macro expansions, and what
happens when we have a long line that overflows the token run?

Since we promise clients that we preserve the validity of pointers that we have already
returned for tokens that appeared earlier in the line, we cannot reallocate the run. Instead,
on overflow it is expanded by chaining a new token run on to the end of the existing one.

The tokens forming a macro’s replacement list are collected by the #define handler, and
placed in storage that is only freed by cpp_destroy. So if a macro is expanded in the line
of tokens, the pointers to the tokens of its expansion that are returned will always remain
valid. However, macros are a little trickier than that, since they give rise to three sources of
fresh tokens. They are the built-in macros like __LINE__, and the ‘#’ and ‘##’ operators for
stringizing and token pasting. I handled this by allocating space for these tokens from the
lexer’s token run chain. This means they automatically receive the same lifetime guarantees
as lexed tokens, and we don’t need to concern ourselves with freeing them.

Lexing into a line of tokens solves some of the token memory management issues, but
not all. The opening parenthesis after a function-like macro name might lie on a different
line, and the front ends definitely want the ability to look ahead past the end of the current
line. So cpplib only moves back to the start of the token run at the end of a line if the
variable keep_tokens is zero. Line-buffering is quite natural for the preprocessor, and as a
result the only time cpplib needs to increment this variable is whilst looking for the opening
parenthesis to, and reading the arguments of, a function-like macro. In the near future
cpplib will export an interface to increment and decrement this variable, so that clients can
share full control over the lifetime of token pointers too.

The routine _cpp_lex_token handles moving to new token runs, calling _cpp_lex_
direct to lex new tokens, or returning previously-lexed tokens if we stepped back in the
token stream. It also checks each token for the BOL flag, which might indicate a directive that
needs to be handled, or require a start-of-line call-back to be made. _cpp_lex_token also

The Lexer 7

handles skipping over tokens in failed conditional blocks, and invalidates the control macro
of the multiple-include optimization if a token was successfully lexed outside a directive. In
other words, its callers do not need to concern themselves with such issues.

Hash Nodes 9

Hash Nodes

When cpplib encounters an “identifier”, it generates a hash code for it and stores it in the
hash table. By “identifier” we mean tokens with type CPP_NAME; this includes identifiers
in the usual C sense, as well as keywords, directive names, macro names and so on. For
example, all of pragma, int, foo and __GNUC__ are identifiers and hashed when lexed.

Each node in the hash table contain various information about the identifier it represents.
For example, its length and type. At any one time, each identifier falls into exactly one of
three categories:

e Macros

These have been declared to be macros, either on the command line or with #define.
A few, such as __TIME__ are built-ins entered in the hash table during initialization.
The hash node for a normal macro points to a structure with more information about
the macro, such as whether it is function-like, how many arguments it takes, and
its expansion. Built-in macros are flagged as special, and instead contain an enum
indicating which of the various built-in macros it is.

e Assertions

Assertions are in a separate namespace to macros. To enforce this, cpp actually
prepends a # character before hashing and entering it in the hash table. An asser-
tion’s node points to a chain of answers to that assertion.

e Void

Everything else falls into this category—an identifier that is not currently a macro, or
a macro that has since been undefined with #undef.

When preprocessing C++, this category also includes the named operators, such as xor.
In expressions these behave like the operators they represent, but in contexts where
the spelling of a token matters they are spelt differently. This spelling distinction is
relevant when they are operands of the stringizing and pasting macro operators # and
##. Named operator hash nodes are flagged, both to catch the spelling distinction and
to prevent them from being defined as macros.

The same identifiers share the same hash node. Since each identifier token, after lexing,
contains a pointer to its hash node, this is used to provide rapid lookup of various informa-
tion. For example, when parsing a #define statement, CPP flags each argument’s identifier
hash node with the index of that argument. This makes duplicated argument checking an
O(1) operation for each argument. Similarly, for each identifier in the macro’s expansion,
lookup to see if it is an argument, and which argument it is, is also an O(1) operation.
Further, each directive name, such as endif, has an associated directive enum stored in its
hash node, so that directive lookup is also O(1).

Macro Expansion Algorithm 11

Macro Expansion Algorithm

Macro expansion is a tricky operation, fraught with nasty corner cases and situations that
render what you thought was a nifty way to optimize the preprocessor’s expansion algorithm
wrong in quite subtle ways.

I strongly recommend you have a good grasp of how the C and C++ standards require
macros to be expanded before diving into this section, let alone the code!l. If you don’t have
a clear mental picture of how things like nested macro expansion, stringizing and token
pasting are supposed to work, damage to your sanity can quickly result.

Internal representation of macros

The preprocessor stores macro expansions in tokenized form. This saves repeated lexing
passes during expansion, at the cost of a small increase in memory consumption on average.
The tokens are stored contiguously in memory, so a pointer to the first one and a token
count is all you need to get the replacement list of a macro.

If the macro is a function-like macro the preprocessor also stores its parameters, in the
form of an ordered list of pointers to the hash table entry of each parameter’s identifier.
Further, in the macro’s stored expansion each occurrence of a parameter is replaced with a
special token of type CPP_MACRO_ARG. Each such token holds the index of the parameter it
represents in the parameter list, which allows rapid replacement of parameters with their
arguments during expansion. Despite this optimization it is still necessary to store the
original parameters to the macro, both for dumping with e.g., ‘-dD’, and to warn about
non-trivial macro redefinitions when the parameter names have changed.

Macro expansion overview

The preprocessor maintains a context stack, implemented as a linked list of cpp_context
structures, which together represent the macro expansion state at any one time. The
struct cpp_reader member variable context points to the current top of this stack. The
top normally holds the unexpanded replacement list of the innermost macro under expan-
sion, except when cpplib is about to pre-expand an argument, in which case it holds that
argument’s unexpanded tokens.

When there are no macros under expansion, cpplib is in base context. All contexts
other than the base context contain a contiguous list of tokens delimited by a starting and
ending token. When not in base context, cpplib obtains the next token from the list of the
top context. If there are no tokens left in the list, it pops that context off the stack, and
subsequent ones if necessary, until an unexhausted context is found or it returns to base
context. In base context, cpplib reads tokens directly from the lexer.

If it encounters an identifier that is both a macro and enabled for expansion, cpplib pre-
pares to push a new context for that macro on the stack by calling the routine enter_macro_
context. When this routine returns, the new context will contain the unexpanded tokens
of the replacement list of that macro. In the case of function-like macros, enter_macro_
context also replaces any parameters in the replacement list, stored as CPP_MACRO_ARG
tokens, with the appropriate macro argument. If the standard requires that the parameter
be replaced with its expanded argument, the argument will have been fully macro expanded
first.

12 The GNU C Preprocessor Internals

enter_macro_context also handles special macros like __LINE__. Although these
macros expand to a single token which cannot contain any further macros, for reasons
of token spacing (see [Token Spacing|, page 15) and simplicity of implementation, cpplib
handles these special macros by pushing a context containing just that one token.

The final thing that enter_macro_context does before returning is to mark the macro
disabled for expansion (except for special macros like __TIME__). The macro is re-enabled
when its context is later popped from the context stack, as described above. This strict
ordering ensures that a macro is disabled whilst its expansion is being scanned, but that it
is not disabled whilst any arguments to it are being expanded.

Scanning the replacement list for macros to expand

The C standard states that, after any parameters have been replaced with their possibly-
expanded arguments, the replacement list is scanned for nested macros. Further, any iden-
tifiers in the replacement list that are not expanded during this scan are never again eligible
for expansion in the future, if the reason they were not expanded is that the macro in
question was disabled.

Clearly this latter condition can only apply to tokens resulting from argument pre-
expansion. Other tokens never have an opportunity to be re-tested for expansion. It is
possible for identifiers that are function-like macros to not expand initially but to expand
during a later scan. This occurs when the identifier is the last token of an argument (and
therefore originally followed by a comma or a closing parenthesis in its macro’s argument
list), and when it replaces its parameter in the macro’s replacement list, the subsequent
token happens to be an opening parenthesis (itself possibly the first token of an argument).

It is important to note that when cpplib reads the last token of a given context, that
context still remains on the stack. Only when looking for the next token do we pop it off
the stack and drop to a lower context. This makes backing up by one token easy, but more
importantly ensures that the macro corresponding to the current context is still disabled
when we are considering the last token of its replacement list for expansion (or indeed
expanding it). As an example, which illustrates many of the points above, consider

#define foo(x) bar x
foo(foo) (2)

which fully expands to ‘bar foo (2)’. During pre-expansion of the argument, ‘foo’ does
not expand even though the macro is enabled, since it has no following parenthesis [pre-
expansion of an argument only uses tokens from that argument; it cannot take tokens from
whatever follows the macro invocation]. This still leaves the argument token ‘foo’ eligible
for future expansion. Then, when re-scanning after argument replacement, the token ‘foo’
is rejected for expansion, and marked ineligible for future expansion, since the macro is now
disabled. It is disabled because the replacement list ‘bar foo’ of the macro is still on the
context stack.

If instead the algorithm looked for an opening parenthesis first and then tested whether
the macro were disabled it would be subtly wrong. In the example above, the replacement
list of ‘foo’ would be popped in the process of finding the parenthesis, re-enabling ‘foo’
and expanding it a second time.

Macro Expansion Algorithm 13

Looking for a function-like macro’s opening parenthesis

Function-like macros only expand when immediately followed by a parenthesis. To do
this cpplib needs to temporarily disable macros and read the next token. Unfortunately,
because of spacing issues (see [Token Spacing], page 15), there can be fake padding tokens
in-between, and if the next real token is not a parenthesis cpplib needs to be able to back
up that one token as well as retain the information in any intervening padding tokens.

Backing up more than one token when macros are involved is not permitted by cpplib,
because in general it might involve issues like restoring popped contexts onto the context
stack, which are too hard. Instead, searching for the parenthesis is handled by a special
function, funlike_invocation_p, which remembers padding information as it reads tokens.
If the next real token is not an opening parenthesis, it backs up that one token, and then
pushes an extra context just containing the padding information if necessary.

Marking tokens ineligible for future expansion

As discussed above, cpplib needs a way of marking tokens as unexpandable. Since the
tokens cpplib handles are read-only once they have been lexed, it instead makes a copy of
the token and adds the flag NO_EXPAND to the copy.

For efficiency and to simplify memory management by avoiding having to remember to
free these tokens, they are allocated as temporary tokens from the lexer’s current token
run (see [Lexing a line|, page 5) using the function _cpp_temp_token. The tokens are then
re-used once the current line of tokens has been read in.

This might sound unsafe. However, tokens runs are not re-used at the end of a line if
it happens to be in the middle of a macro argument list, and cpplib only wants to back-
up more than one lexer token in situations where no macro expansion is involved, so the
optimization is safe.

Token Spacing 15

Token Spacing

First, consider an issue that only concerns the stand-alone preprocessor: there needs to be
a guarantee that re-reading its preprocessed output results in an identical token stream.
Without taking special measures, this might not be the case because of macro substitution.
For example:
#define PLUS +
#define EMPTY
#define f(x) =x=
+PLUS -EMPTY- PLUS+ f(=)
S+ + - -+ + ===
not
=+ —— ++ ===
One solution would be to simply insert a space between all adjacent tokens. However,
we would like to keep space insertion to a minimum, both for aesthetic reasons and because
it causes problems for people who still try to abuse the preprocessor for things like Fortran
source and Makefiles.

For now, just notice that when tokens are added (or removed, as shown by the EMPTY
example) from the original lexed token stream, we need to check for accidental token pasting.
We call this paste avoidance. Token addition and removal can only occur because of macro
expansion, but accidental pasting can occur in many places: both before and after each
macro replacement, each argument replacement, and additionally each token created by the
‘#” and ‘##° operators.

Look at how the preprocessor gets whitespace output correct normally. The cpp_token
structure contains a flags byte, and one of those flags is PREV_WHITE. This is flagged by the
lexer, and indicates that the token was preceded by whitespace of some form other than a
new line. The stand-alone preprocessor can use this flag to decide whether to insert a space
between tokens in the output.

Now consider the result of the following macro expansion:
#define add(x, y, z) x + y +z;
sum = add (1,2, 3);
— sum = 1 + 2 +3;

The interesting thing here is that the tokens ‘1’ and ‘2’ are output with a preceding
space, and ‘3’ is output without a preceding space, but when lexed none of these tokens had
that property. Careful consideration reveals that ‘1’ gets its preceding whitespace from the
space preceding ‘add’ in the macro invocation, not replacement list. ‘2’ gets its whitespace
from the space preceding the parameter ‘y’ in the macro replacement list, and ‘3’ has no
preceding space because parameter ‘z’ has none in the replacement list.

Once lexed, tokens are effectively fixed and cannot be altered, since pointers to them
might be held in many places, in particular by in-progress macro expansions. So instead
of modifying the two tokens above, the preprocessor inserts a special token, which I call
a padding token, into the token stream to indicate that spacing of the subsequent token
is special. The preprocessor inserts padding tokens in front of every macro expansion and
expanded macro argument. These point to a source token from which the subsequent real
token should inherit its spacing. In the above example, the source tokens are ‘add’ in the
macro invocation, and ‘y’ and ‘z’ in the macro replacement list, respectively.

16 The GNU C Preprocessor Internals

It is quite easy to get multiple padding tokens in a row, for example if a macro’s first
replacement token expands straight into another macro.
#define foo bar
#define bar baz
[foo]
— [baz]

Here, two padding tokens are generated with sources the ‘foo’ token between the brack-
ets, and the ‘bar’ token from foo’s replacement list, respectively. Clearly the first padding
token is the one to use, so the output code should contain a rule that the first padding
token in a sequence is the one that matters.

But what if a macro expansion is left? Adjusting the above example slightly:

#define foo bar
#define bar EMPTY baz
#define EMPTY
[foo] EMPTY;

— [baz] ;

As shown, now there should be a space before ‘baz’ and the semicolon in the output.

The rules we decided above fail for ‘baz’: we generate three padding tokens, one per
macro invocation, before the token ‘baz’. We would then have it take its spacing from the
first of these, which carries source token ‘foo’ with no leading space.

It is vital that cpplib get spacing correct in these examples since any of these macro
expansions could be stringized, where spacing matters.

So, this demonstrates that not just entering macro and argument expansions, but leaving
them requires special handling too. I made cpplib insert a padding token with a NULL source
token when leaving macro expansions, as well as after each replaced argument in a macro’s
replacement list. It also inserts appropriate padding tokens on either side of tokens created
by the ‘#’ and ‘##’ operators. I expanded the rule so that, if we see a padding token with
a NULL source token, and that source token has no leading space, then we behave as if we
have seen no padding tokens at all. A quick check shows this rule will then get the above
example correct as well.

Now a relationship with paste avoidance is apparent: we have to be careful about paste
avoidance in exactly the same locations we have padding tokens in order to get white space
correct. This makes implementation of paste avoidance easy: wherever the stand-alone
preprocessor is fixing up spacing because of padding tokens, and it turns out that no space
is needed, it has to take the extra step to check that a space is not needed after all to avoid
an accidental paste. The function cpp_avoid_paste advises whether a space is required
between two consecutive tokens. To avoid excessive spacing, it tries hard to only require a
space if one is likely to be necessary, but for reasons of efficiency it is slightly conservative
and might recommend a space where one is not strictly needed.

Line numbering 17

Line numbering

Just which line number anyway?

There are three reasonable requirements a cpplib client might have for the line number of
a token passed to it:

e The source line it was lexed on.

e The line it is output on. This can be different to the line it was lexed on if, for example,
there are intervening escaped newlines or C-style comments. For example:

foo /* A long
comment */ bar \
baz
=
foo bar baz
e If the token results from a macro expansion, the line of the macro name, or possibly
the line of the closing parenthesis in the case of function-like macro expansion.

The cpp_token structure contains line and col members. The lexer fills these in
with the line and column of the first character of the token. Consequently, but maybe
unexpectedly, a token from the replacement list of a macro expansion carries the location
of the token within the #define directive, because cpplib expands a macro by returning
pointers to the tokens in its replacement list. The current implementation of cpplib assigns
tokens created from built-in macros and the ‘#’ and ‘##’ operators the location of the most
recently lexed token. This is a because they are allocated from the lexer’s token runs, and
because of the way the diagnostic routines infer the appropriate location to report.

The diagnostic routines in cpplib display the location of the most recently lexed token,
unless they are passed a specific line and column to report. For diagnostics regarding
tokens that arise from macro expansions, it might also be helpful for the user to see the
original location in the macro definition that the token came from. Since that is exactly
the information each token carries, such an enhancement could be made relatively easily in
future.

The stand-alone preprocessor faces a similar problem when determining the correct line
to output the token on: the position attached to a token is fairly useless if the token came
from a macro expansion. All tokens on a logical line should be output on its first physical
line, so the token’s reported location is also wrong if it is part of a physical line other than
the first.

To solve these issues, cpplib provides a callback that is generated whenever it lexes a
preprocessing token that starts a new logical line other than a directive. It passes this token
(which may be a CPP_EOF token indicating the end of the translation unit) to the callback
routine, which can then use the line and column of this token to produce correct output.

Representation of line numbers

As mentioned above, cpplib stores with each token the line number that it was lexed on.
In fact, this number is not the number of the line in the source file, but instead bears more
resemblance to the number of the line in the translation unit.

18 The GNU C Preprocessor Internals

The preprocessor maintains a monotonic increasing line count, which is incremented at
every new line character (and also at the end of any buffer that does not end in a new line).
Since a line number of zero is useful to indicate certain special states and conditions, this
variable starts counting from one.

This variable therefore uniquely enumerates each line in the translation unit. With some
simple infrastructure, it is straight forward to map from this to the original source file and
line number pair, saving space whenever line number information needs to be saved. The
code the implements this mapping lies in the files ‘1line-map.c’ and ‘line-map.h’.

Command-line macros and assertions are implemented by pushing a buffer containing
the right hand side of an equivalent #define or #assert directive. Some built-in macros
are handled similarly. Since these are all processed before the first line of the main input
file, it will typically have an assigned line closer to twenty than to one.

The Multiple-Include Optimization 19

The Multiple-Include Optimization

Header files are often of the form

#ifndef FOO
#tdefine FOO

#endif
to prevent the compiler from processing them more than once. The preprocessor notices
such header files, so that if the header file appears in a subsequent #include directive and

F0O is defined, then it is ignored and it doesn’t preprocess or even re-open the file a second
time. This is referred to as the multiple include optimization.

Under what circumstances is such an optimization valid? If the file were included a
second time, it can only be optimized away if that inclusion would result in no tokens to
return, and no relevant directives to process. Therefore the current implementation imposes
requirements and makes some allowances as follows:

1. There must be no tokens outside the controlling #if-#endif pair, but whitespace and
comments are permitted.

2. There must be no directives outside the controlling directive pair, but the null directive
(a line containing nothing other than a single ‘4’ and possibly whitespace) is permitted.

3. The opening directive must be of the form
#ifndef FOO

or
#if !defined FOO [equivalently, #if !defined(F00)]

4. In the second form above, the tokens forming the #if expression must have come
directly from the source file—no macro expansion must have been involved. This is
because macro definitions can change, and tracking whether or not a relevant change
has been made is not worth the implementation cost.

5. There can be no #else or #elif directives at the outer conditional block level, because
they would probably contain something of interest to a subsequent pass.

First, when pushing a new file on the buffer stack, _stack_include_file sets the con-
trolling macro mi_cmacro to NULL, and sets mi_valid to true. This indicates that the
preprocessor has not yet encountered anything that would invalidate the multiple-include
optimization. As described in the next few paragraphs, these two variables having these
values effectively indicates top-of-file.

When about to return a token that is not part of a directive, _cpp_lex_token sets mi_
valid to false. This enforces the constraint that tokens outside the controlling conditional
block invalidate the optimization.

The do_if, when appropriate, and do_ifndef directive handlers pass the controlling
macro to the function push_conditional. cpplib maintains a stack of nested conditional
blocks, and after processing every opening conditional this function pushes an if_stack
structure onto the stack. In this structure it records the controlling macro for the block,
provided there is one and we're at top-of-file (as described above). If an #elif or #else
directive is encountered, the controlling macro for that block is cleared to NULL. Otherwise,
it survives until the #endif closing the block, upon which do_endif sets mi_valid to true
and stores the controlling macro in mi_cmacro.

20 The GNU C Preprocessor Internals

_cpp_handle_directive clears mi_valid when processing any directive other than an
opening conditional and the null directive. With this, and requiring top-of-file to record a
controlling macro, and no #else or #elif for it to survive and be copied to mi_cmacro by
do_endif, we have enforced the absence of directives outside the main conditional block for
the optimization to be on.

Note that whilst we are inside the conditional block, mi_valid is likely to be reset to
false, but this does not matter since the closing #endif restores it to true if appropriate.

Finally, since _cpp_lex_direct pops the file off the buffer stack at EOF without returning
a token, if the #endif directive was not followed by any tokens, mi_valid is true and _cpp_
pop_file_buffer remembers the controlling macro associated with the file. Subsequent
calls to stack_include_file result in no buffer being pushed if the controlling macro is
defined, effecting the optimization.

A quick word on how we handle the
#if !defined FOO

case. _cpp_parse_expr and parse_defined take steps to see whether the three stages ‘!’,
‘defined-expression’ and ‘end-of-directive’ occur in order in a #if expression. If so,
they return the guard macro to do_if in the variable mi_ind_cmacro, and otherwise set it
to NULL. enter_macro_context sets mi_valid to false, so if a macro was expanded whilst
parsing any part of the expression, then the top-of-file test in push_conditional fails and
the optimization is turned off.

File Handling 21

File Handling

Fairly obviously, the file handling code of cpplib resides in the file ‘files.c’. It takes care
of the details of file searching, opening, reading and caching, for both the main source file
and all the headers it recursively includes.

The basic strategy is to minimize the number of system calls. On many systems, the
basic open () and fstat () system calls can be quite expensive. For every #include-d file,
we need to try all the directories in the search path until we find a match. Some projects,
such as glibc, pass twenty or thirty include paths on the command line, so this can rapidly
become time consuming.

For a header file we have not encountered before we have little choice but to do this.
However, it is often the case that the same headers are repeatedly included, and in these
cases we try to avoid repeating the filesystem queries whilst searching for the correct file.

For each file we try to open, we store the constructed path in a splay tree. This path
first undergoes simplification by the function _cpp_simplify_pathname. For example,
‘/usr/include/bits/../foo.h’ is simplified to ‘/usr/include/foo.h’ before we enter it
in the splay tree and try to open () the file. CPP will then find subsequent uses of ‘foo.h’,
even as ‘/usr/include/foo.h’, in the splay tree and save system calls.

Further, it is likely the file contents have also been cached, saving a read () system call.
We don’t bother caching the contents of header files that are re-inclusion protected, and
whose re-inclusion macro is defined when we leave the header file for the first time. If the
host supports it, we try to map suitably large files into memory, rather than reading them
in directly.

The include paths are internally stored on a null-terminated singly-linked list, starting
with the "header.h" directory search chain, which then links into the <header.h> directory
chain.

Files included with the <foo.h> syntax start the lookup directly in the second half of
this chain. However, files included with the "foo.h" syntax start at the beginning of the
chain, but with one extra directory prepended. This is the directory of the current file;
the one containing the #include directive. Prepending this directory on a per-file basis is
handled by the function search_from.

Note that a header included with a directory component, such as #include
"mydir/foo.h" and opened as ‘/usr/local/include/mydir/foo.h’, will have the
complete path minus the basename ‘foo.h’ as the current directory.

Enough information is stored in the splay tree that CPP can immediately tell whether
it can skip the header file because of the multiple include optimization, whether the file
didn’t exist or couldn’t be opened for some reason, or whether the header was flagged not
to be re-used, as it is with the obsolete #import directive.

For the benefit of MS-DOS filesystems with an 8.3 filename limitation, CPP offers the
ability to treat various include file names as aliases for the real header files with shorter
names. The map from one to the other is found in a special file called ‘header.gcc’, stored
in the command line (or system) include directories to which the mapping applies. This
may be higher up the directory tree than the full path to the file minus the base name.

Concept Index

Concept Index

A

ASSEITIONS. . ottt 9

C

H

hash table...... 9
header files 1

I

identifiers...... ... 9
interface......... ... 1

23
leXer ..o 3
line numberso i 17
MAaCro eXPansion.o.ovviiuuieieinnn... 11
macro representation (internal) 11
INACTOS « v e ettt e ettt e e e et 9
multiple-include optimization.................. 19
named Operators.............c.oiiiiiiiiiii... 9
newlines..........oooiiiiiiiiiiii i 3
paste avoidance., 15
SPACIIIZ . « v v ettt et e 15

T

BOKEN TUN. ..o 5
token spacing. 15

	Conventions
	The Lexer
	Overview
	Lexing a token
	Lexing a line

	Hash Nodes
	Macro Expansion Algorithm
	Internal representation of macros
	Macro expansion overview
	Scanning the replacement list for macros to expand
	Looking for a function-like macro's opening parenthesis
	Marking tokens ineligible for future expansion

	Token Spacing
	Line numbering
	Just which line number anyway?
	Representation of line numbers

	The Multiple-Include Optimization
	File Handling
	Concept Index

