blob: 9b5933c66c165d9b5fea0164b639187d82157988 [file] [log] [blame]
Andi Kleen6a460792009-09-16 11:50:15 +02001/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
Andi Kleen1c80b992010-09-27 23:09:51 +020010 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
Andi Kleen6a460792009-09-16 11:50:15 +020011 * failure.
Andi Kleen1c80b992010-09-27 23:09:51 +020012 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
Andi Kleen6a460792009-09-16 11:50:15 +020015 *
16 * Handles page cache pages in various states. The tricky part
Andi Kleen1c80b992010-09-27 23:09:51 +020017 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
Andi Kleen6a460792009-09-16 11:50:15 +020030 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
Andi Kleen6a460792009-09-16 11:50:15 +020038#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
Wu Fengguang478c5ff2009-12-16 12:19:59 +010041#include <linux/kernel-page-flags.h>
Andi Kleen6a460792009-09-16 11:50:15 +020042#include <linux/sched.h>
Hugh Dickins01e00f82009-10-13 15:02:11 +010043#include <linux/ksm.h>
Andi Kleen6a460792009-09-16 11:50:15 +020044#include <linux/rmap.h>
Paul Gortmakerb9e15ba2011-05-26 16:00:52 -040045#include <linux/export.h>
Andi Kleen6a460792009-09-16 11:50:15 +020046#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
Andi Kleenfacb6012009-12-16 12:20:00 +010049#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090052#include <linux/slab.h>
Huang Yingbf998152010-05-31 14:28:19 +080053#include <linux/swapops.h>
Naoya Horiguchi7af446a2010-05-28 09:29:17 +090054#include <linux/hugetlb.h>
KOSAKI Motohiro20d6c962010-12-02 14:31:19 -080055#include <linux/memory_hotplug.h>
Minchan Kim5db8a732011-06-15 15:08:48 -070056#include <linux/mm_inline.h>
Huang Yingea8f5fb2011-07-13 13:14:27 +080057#include <linux/kfifo.h>
Andi Kleen6a460792009-09-16 11:50:15 +020058#include "internal.h"
59
60int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62int sysctl_memory_failure_recovery __read_mostly = 1;
63
Xishi Qiu293c07e2013-02-22 16:34:02 -080064atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
Andi Kleen6a460792009-09-16 11:50:15 +020065
Andi Kleen27df5062009-12-21 19:56:42 +010066#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
Haicheng Li1bfe5fe2009-12-16 12:19:59 +010068u32 hwpoison_filter_enable = 0;
Wu Fengguang7c116f22009-12-16 12:19:59 +010069u32 hwpoison_filter_dev_major = ~0U;
70u32 hwpoison_filter_dev_minor = ~0U;
Wu Fengguang478c5ff2009-12-16 12:19:59 +010071u64 hwpoison_filter_flags_mask;
72u64 hwpoison_filter_flags_value;
Haicheng Li1bfe5fe2009-12-16 12:19:59 +010073EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
Wu Fengguang7c116f22009-12-16 12:19:59 +010074EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
Wu Fengguang478c5ff2009-12-16 12:19:59 +010076EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
Wu Fengguang7c116f22009-12-16 12:19:59 +010078
79static int hwpoison_filter_dev(struct page *p)
80{
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
Andi Kleen1c80b992010-09-27 23:09:51 +020089 * page_mapping() does not accept slab pages.
Wu Fengguang7c116f22009-12-16 12:19:59 +010090 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107}
108
Wu Fengguang478c5ff2009-12-16 12:19:59 +0100109static int hwpoison_filter_flags(struct page *p)
110{
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119}
120
Andi Kleen4fd466e2009-12-16 12:19:59 +0100121/*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
Andrew Mortonc255a452012-07-31 16:43:02 -0700131#ifdef CONFIG_MEMCG_SWAP
Andi Kleen4fd466e2009-12-16 12:19:59 +0100132u64 hwpoison_filter_memcg;
133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134static int hwpoison_filter_task(struct page *p)
135{
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
Tejun Heob1664922014-02-11 11:52:49 -0500148 ino = cgroup_ino(css->cgroup);
Andi Kleen4fd466e2009-12-16 12:19:59 +0100149 css_put(css);
150
Tejun Heob1664922014-02-11 11:52:49 -0500151 if (!ino || ino != hwpoison_filter_memcg)
Andi Kleen4fd466e2009-12-16 12:19:59 +0100152 return -EINVAL;
153
154 return 0;
155}
156#else
157static int hwpoison_filter_task(struct page *p) { return 0; }
158#endif
159
Wu Fengguang7c116f22009-12-16 12:19:59 +0100160int hwpoison_filter(struct page *p)
161{
Haicheng Li1bfe5fe2009-12-16 12:19:59 +0100162 if (!hwpoison_filter_enable)
163 return 0;
164
Wu Fengguang7c116f22009-12-16 12:19:59 +0100165 if (hwpoison_filter_dev(p))
166 return -EINVAL;
167
Wu Fengguang478c5ff2009-12-16 12:19:59 +0100168 if (hwpoison_filter_flags(p))
169 return -EINVAL;
170
Andi Kleen4fd466e2009-12-16 12:19:59 +0100171 if (hwpoison_filter_task(p))
172 return -EINVAL;
173
Wu Fengguang7c116f22009-12-16 12:19:59 +0100174 return 0;
175}
Andi Kleen27df5062009-12-21 19:56:42 +0100176#else
177int hwpoison_filter(struct page *p)
178{
179 return 0;
180}
181#endif
182
Wu Fengguang7c116f22009-12-16 12:19:59 +0100183EXPORT_SYMBOL_GPL(hwpoison_filter);
184
Andi Kleen6a460792009-09-16 11:50:15 +0200185/*
Tony Luck7329bbe2011-12-13 09:27:58 -0800186 * Send all the processes who have the page mapped a signal.
187 * ``action optional'' if they are not immediately affected by the error
188 * ``action required'' if error happened in current execution context
Andi Kleen6a460792009-09-16 11:50:15 +0200189 */
Tony Luck7329bbe2011-12-13 09:27:58 -0800190static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 unsigned long pfn, struct page *page, int flags)
Andi Kleen6a460792009-09-16 11:50:15 +0200192{
193 struct siginfo si;
194 int ret;
195
196 printk(KERN_ERR
Tony Luck7329bbe2011-12-13 09:27:58 -0800197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
Andi Kleen6a460792009-09-16 11:50:15 +0200198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
200 si.si_errno = 0;
Andi Kleen6a460792009-09-16 11:50:15 +0200201 si.si_addr = (void *)addr;
202#ifdef __ARCH_SI_TRAPNO
203 si.si_trapno = trapno;
204#endif
Wanpeng Lif9121152013-09-11 14:22:52 -0700205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
Tony Luck7329bbe2011-12-13 09:27:58 -0800206
207 if ((flags & MF_ACTION_REQUIRED) && t == current) {
208 si.si_code = BUS_MCEERR_AR;
209 ret = force_sig_info(SIGBUS, &si, t);
210 } else {
211 /*
212 * Don't use force here, it's convenient if the signal
213 * can be temporarily blocked.
214 * This could cause a loop when the user sets SIGBUS
215 * to SIG_IGN, but hopefully no one will do that?
216 */
217 si.si_code = BUS_MCEERR_AO;
218 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
219 }
Andi Kleen6a460792009-09-16 11:50:15 +0200220 if (ret < 0)
221 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 t->comm, t->pid, ret);
223 return ret;
224}
225
226/*
Andi Kleen588f9ce2009-12-16 12:19:57 +0100227 * When a unknown page type is encountered drain as many buffers as possible
228 * in the hope to turn the page into a LRU or free page, which we can handle.
229 */
Andi Kleenfacb6012009-12-16 12:20:00 +0100230void shake_page(struct page *p, int access)
Andi Kleen588f9ce2009-12-16 12:19:57 +0100231{
232 if (!PageSlab(p)) {
233 lru_add_drain_all();
234 if (PageLRU(p))
235 return;
236 drain_all_pages();
237 if (PageLRU(p) || is_free_buddy_page(p))
238 return;
239 }
Andi Kleenfacb6012009-12-16 12:20:00 +0100240
Andi Kleen588f9ce2009-12-16 12:19:57 +0100241 /*
Jin Dongmingaf241a02011-02-01 15:52:41 -0800242 * Only call shrink_slab here (which would also shrink other caches) if
243 * access is not potentially fatal.
Andi Kleen588f9ce2009-12-16 12:19:57 +0100244 */
Andi Kleenfacb6012009-12-16 12:20:00 +0100245 if (access) {
246 int nr;
Dave Chinner0ce3d742013-08-28 10:18:03 +1000247 int nid = page_to_nid(p);
Andi Kleenfacb6012009-12-16 12:20:00 +0100248 do {
Ying Hana09ed5e2011-05-24 17:12:26 -0700249 struct shrink_control shrink = {
250 .gfp_mask = GFP_KERNEL,
Ying Hana09ed5e2011-05-24 17:12:26 -0700251 };
Dave Chinner0ce3d742013-08-28 10:18:03 +1000252 node_set(nid, shrink.nodes_to_scan);
Ying Hana09ed5e2011-05-24 17:12:26 -0700253
Ying Han1495f232011-05-24 17:12:27 -0700254 nr = shrink_slab(&shrink, 1000, 1000);
Andi Kleen47f43e72010-09-28 07:37:55 +0200255 if (page_count(p) == 1)
Andi Kleenfacb6012009-12-16 12:20:00 +0100256 break;
257 } while (nr > 10);
258 }
Andi Kleen588f9ce2009-12-16 12:19:57 +0100259}
260EXPORT_SYMBOL_GPL(shake_page);
261
262/*
Andi Kleen6a460792009-09-16 11:50:15 +0200263 * Kill all processes that have a poisoned page mapped and then isolate
264 * the page.
265 *
266 * General strategy:
267 * Find all processes having the page mapped and kill them.
268 * But we keep a page reference around so that the page is not
269 * actually freed yet.
270 * Then stash the page away
271 *
272 * There's no convenient way to get back to mapped processes
273 * from the VMAs. So do a brute-force search over all
274 * running processes.
275 *
276 * Remember that machine checks are not common (or rather
277 * if they are common you have other problems), so this shouldn't
278 * be a performance issue.
279 *
280 * Also there are some races possible while we get from the
281 * error detection to actually handle it.
282 */
283
284struct to_kill {
285 struct list_head nd;
286 struct task_struct *tsk;
287 unsigned long addr;
Andi Kleen9033ae12010-09-27 23:36:05 +0200288 char addr_valid;
Andi Kleen6a460792009-09-16 11:50:15 +0200289};
290
291/*
292 * Failure handling: if we can't find or can't kill a process there's
293 * not much we can do. We just print a message and ignore otherwise.
294 */
295
296/*
297 * Schedule a process for later kill.
298 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
299 * TBD would GFP_NOIO be enough?
300 */
301static void add_to_kill(struct task_struct *tsk, struct page *p,
302 struct vm_area_struct *vma,
303 struct list_head *to_kill,
304 struct to_kill **tkc)
305{
306 struct to_kill *tk;
307
308 if (*tkc) {
309 tk = *tkc;
310 *tkc = NULL;
311 } else {
312 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
313 if (!tk) {
314 printk(KERN_ERR
315 "MCE: Out of memory while machine check handling\n");
316 return;
317 }
318 }
319 tk->addr = page_address_in_vma(p, vma);
320 tk->addr_valid = 1;
321
322 /*
323 * In theory we don't have to kill when the page was
324 * munmaped. But it could be also a mremap. Since that's
325 * likely very rare kill anyways just out of paranoia, but use
326 * a SIGKILL because the error is not contained anymore.
327 */
328 if (tk->addr == -EFAULT) {
Andi Kleenfb46e732010-09-27 23:31:30 +0200329 pr_info("MCE: Unable to find user space address %lx in %s\n",
Andi Kleen6a460792009-09-16 11:50:15 +0200330 page_to_pfn(p), tsk->comm);
331 tk->addr_valid = 0;
332 }
333 get_task_struct(tsk);
334 tk->tsk = tsk;
335 list_add_tail(&tk->nd, to_kill);
336}
337
338/*
339 * Kill the processes that have been collected earlier.
340 *
341 * Only do anything when DOIT is set, otherwise just free the list
342 * (this is used for clean pages which do not need killing)
343 * Also when FAIL is set do a force kill because something went
344 * wrong earlier.
345 */
Tony Luck6751ed62012-07-11 10:20:47 -0700346static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
Tony Luck7329bbe2011-12-13 09:27:58 -0800347 int fail, struct page *page, unsigned long pfn,
348 int flags)
Andi Kleen6a460792009-09-16 11:50:15 +0200349{
350 struct to_kill *tk, *next;
351
352 list_for_each_entry_safe (tk, next, to_kill, nd) {
Tony Luck6751ed62012-07-11 10:20:47 -0700353 if (forcekill) {
Andi Kleen6a460792009-09-16 11:50:15 +0200354 /*
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200355 * In case something went wrong with munmapping
Andi Kleen6a460792009-09-16 11:50:15 +0200356 * make sure the process doesn't catch the
357 * signal and then access the memory. Just kill it.
Andi Kleen6a460792009-09-16 11:50:15 +0200358 */
359 if (fail || tk->addr_valid == 0) {
360 printk(KERN_ERR
361 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
362 pfn, tk->tsk->comm, tk->tsk->pid);
363 force_sig(SIGKILL, tk->tsk);
364 }
365
366 /*
367 * In theory the process could have mapped
368 * something else on the address in-between. We could
369 * check for that, but we need to tell the
370 * process anyways.
371 */
Tony Luck7329bbe2011-12-13 09:27:58 -0800372 else if (kill_proc(tk->tsk, tk->addr, trapno,
373 pfn, page, flags) < 0)
Andi Kleen6a460792009-09-16 11:50:15 +0200374 printk(KERN_ERR
375 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
376 pfn, tk->tsk->comm, tk->tsk->pid);
377 }
378 put_task_struct(tk->tsk);
379 kfree(tk);
380 }
381}
382
383static int task_early_kill(struct task_struct *tsk)
384{
385 if (!tsk->mm)
386 return 0;
387 if (tsk->flags & PF_MCE_PROCESS)
388 return !!(tsk->flags & PF_MCE_EARLY);
389 return sysctl_memory_failure_early_kill;
390}
391
392/*
393 * Collect processes when the error hit an anonymous page.
394 */
395static void collect_procs_anon(struct page *page, struct list_head *to_kill,
396 struct to_kill **tkc)
397{
398 struct vm_area_struct *vma;
399 struct task_struct *tsk;
400 struct anon_vma *av;
Michel Lespinassebf181b92012-10-08 16:31:39 -0700401 pgoff_t pgoff;
Andi Kleen6a460792009-09-16 11:50:15 +0200402
Ingo Molnar4fc3f1d2012-12-02 19:56:50 +0000403 av = page_lock_anon_vma_read(page);
Andi Kleen6a460792009-09-16 11:50:15 +0200404 if (av == NULL) /* Not actually mapped anymore */
Peter Zijlstra9b679322011-06-27 16:18:09 -0700405 return;
406
Michel Lespinassebf181b92012-10-08 16:31:39 -0700407 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700408 read_lock(&tasklist_lock);
Andi Kleen6a460792009-09-16 11:50:15 +0200409 for_each_process (tsk) {
Rik van Riel5beb4932010-03-05 13:42:07 -0800410 struct anon_vma_chain *vmac;
411
Andi Kleen6a460792009-09-16 11:50:15 +0200412 if (!task_early_kill(tsk))
413 continue;
Michel Lespinassebf181b92012-10-08 16:31:39 -0700414 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
415 pgoff, pgoff) {
Rik van Riel5beb4932010-03-05 13:42:07 -0800416 vma = vmac->vma;
Andi Kleen6a460792009-09-16 11:50:15 +0200417 if (!page_mapped_in_vma(page, vma))
418 continue;
419 if (vma->vm_mm == tsk->mm)
420 add_to_kill(tsk, page, vma, to_kill, tkc);
421 }
422 }
Andi Kleen6a460792009-09-16 11:50:15 +0200423 read_unlock(&tasklist_lock);
Ingo Molnar4fc3f1d2012-12-02 19:56:50 +0000424 page_unlock_anon_vma_read(av);
Andi Kleen6a460792009-09-16 11:50:15 +0200425}
426
427/*
428 * Collect processes when the error hit a file mapped page.
429 */
430static void collect_procs_file(struct page *page, struct list_head *to_kill,
431 struct to_kill **tkc)
432{
433 struct vm_area_struct *vma;
434 struct task_struct *tsk;
Andi Kleen6a460792009-09-16 11:50:15 +0200435 struct address_space *mapping = page->mapping;
436
Peter Zijlstra3d48ae42011-05-24 17:12:06 -0700437 mutex_lock(&mapping->i_mmap_mutex);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700438 read_lock(&tasklist_lock);
Andi Kleen6a460792009-09-16 11:50:15 +0200439 for_each_process(tsk) {
440 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
441
442 if (!task_early_kill(tsk))
443 continue;
444
Michel Lespinasse6b2dbba2012-10-08 16:31:25 -0700445 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
Andi Kleen6a460792009-09-16 11:50:15 +0200446 pgoff) {
447 /*
448 * Send early kill signal to tasks where a vma covers
449 * the page but the corrupted page is not necessarily
450 * mapped it in its pte.
451 * Assume applications who requested early kill want
452 * to be informed of all such data corruptions.
453 */
454 if (vma->vm_mm == tsk->mm)
455 add_to_kill(tsk, page, vma, to_kill, tkc);
456 }
457 }
Andi Kleen6a460792009-09-16 11:50:15 +0200458 read_unlock(&tasklist_lock);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700459 mutex_unlock(&mapping->i_mmap_mutex);
Andi Kleen6a460792009-09-16 11:50:15 +0200460}
461
462/*
463 * Collect the processes who have the corrupted page mapped to kill.
464 * This is done in two steps for locking reasons.
465 * First preallocate one tokill structure outside the spin locks,
466 * so that we can kill at least one process reasonably reliable.
467 */
468static void collect_procs(struct page *page, struct list_head *tokill)
469{
470 struct to_kill *tk;
471
472 if (!page->mapping)
473 return;
474
475 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
476 if (!tk)
477 return;
478 if (PageAnon(page))
479 collect_procs_anon(page, tokill, &tk);
480 else
481 collect_procs_file(page, tokill, &tk);
482 kfree(tk);
483}
484
485/*
486 * Error handlers for various types of pages.
487 */
488
489enum outcome {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100490 IGNORED, /* Error: cannot be handled */
491 FAILED, /* Error: handling failed */
Andi Kleen6a460792009-09-16 11:50:15 +0200492 DELAYED, /* Will be handled later */
Andi Kleen6a460792009-09-16 11:50:15 +0200493 RECOVERED, /* Successfully recovered */
494};
495
496static const char *action_name[] = {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100497 [IGNORED] = "Ignored",
Andi Kleen6a460792009-09-16 11:50:15 +0200498 [FAILED] = "Failed",
499 [DELAYED] = "Delayed",
Andi Kleen6a460792009-09-16 11:50:15 +0200500 [RECOVERED] = "Recovered",
501};
502
503/*
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100504 * XXX: It is possible that a page is isolated from LRU cache,
505 * and then kept in swap cache or failed to remove from page cache.
506 * The page count will stop it from being freed by unpoison.
507 * Stress tests should be aware of this memory leak problem.
508 */
509static int delete_from_lru_cache(struct page *p)
510{
511 if (!isolate_lru_page(p)) {
512 /*
513 * Clear sensible page flags, so that the buddy system won't
514 * complain when the page is unpoison-and-freed.
515 */
516 ClearPageActive(p);
517 ClearPageUnevictable(p);
518 /*
519 * drop the page count elevated by isolate_lru_page()
520 */
521 page_cache_release(p);
522 return 0;
523 }
524 return -EIO;
525}
526
527/*
Andi Kleen6a460792009-09-16 11:50:15 +0200528 * Error hit kernel page.
529 * Do nothing, try to be lucky and not touch this instead. For a few cases we
530 * could be more sophisticated.
531 */
532static int me_kernel(struct page *p, unsigned long pfn)
533{
Andi Kleen6a460792009-09-16 11:50:15 +0200534 return IGNORED;
535}
536
537/*
538 * Page in unknown state. Do nothing.
539 */
540static int me_unknown(struct page *p, unsigned long pfn)
541{
542 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
543 return FAILED;
544}
545
546/*
Andi Kleen6a460792009-09-16 11:50:15 +0200547 * Clean (or cleaned) page cache page.
548 */
549static int me_pagecache_clean(struct page *p, unsigned long pfn)
550{
551 int err;
552 int ret = FAILED;
553 struct address_space *mapping;
554
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100555 delete_from_lru_cache(p);
556
Andi Kleen6a460792009-09-16 11:50:15 +0200557 /*
558 * For anonymous pages we're done the only reference left
559 * should be the one m_f() holds.
560 */
561 if (PageAnon(p))
562 return RECOVERED;
563
564 /*
565 * Now truncate the page in the page cache. This is really
566 * more like a "temporary hole punch"
567 * Don't do this for block devices when someone else
568 * has a reference, because it could be file system metadata
569 * and that's not safe to truncate.
570 */
571 mapping = page_mapping(p);
572 if (!mapping) {
573 /*
574 * Page has been teared down in the meanwhile
575 */
576 return FAILED;
577 }
578
579 /*
580 * Truncation is a bit tricky. Enable it per file system for now.
581 *
582 * Open: to take i_mutex or not for this? Right now we don't.
583 */
584 if (mapping->a_ops->error_remove_page) {
585 err = mapping->a_ops->error_remove_page(mapping, p);
586 if (err != 0) {
587 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
588 pfn, err);
589 } else if (page_has_private(p) &&
590 !try_to_release_page(p, GFP_NOIO)) {
Andi Kleenfb46e732010-09-27 23:31:30 +0200591 pr_info("MCE %#lx: failed to release buffers\n", pfn);
Andi Kleen6a460792009-09-16 11:50:15 +0200592 } else {
593 ret = RECOVERED;
594 }
595 } else {
596 /*
597 * If the file system doesn't support it just invalidate
598 * This fails on dirty or anything with private pages
599 */
600 if (invalidate_inode_page(p))
601 ret = RECOVERED;
602 else
603 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
604 pfn);
605 }
606 return ret;
607}
608
609/*
Zhi Yong Wu549543d2014-01-21 15:49:08 -0800610 * Dirty pagecache page
Andi Kleen6a460792009-09-16 11:50:15 +0200611 * Issues: when the error hit a hole page the error is not properly
612 * propagated.
613 */
614static int me_pagecache_dirty(struct page *p, unsigned long pfn)
615{
616 struct address_space *mapping = page_mapping(p);
617
618 SetPageError(p);
619 /* TBD: print more information about the file. */
620 if (mapping) {
621 /*
622 * IO error will be reported by write(), fsync(), etc.
623 * who check the mapping.
624 * This way the application knows that something went
625 * wrong with its dirty file data.
626 *
627 * There's one open issue:
628 *
629 * The EIO will be only reported on the next IO
630 * operation and then cleared through the IO map.
631 * Normally Linux has two mechanisms to pass IO error
632 * first through the AS_EIO flag in the address space
633 * and then through the PageError flag in the page.
634 * Since we drop pages on memory failure handling the
635 * only mechanism open to use is through AS_AIO.
636 *
637 * This has the disadvantage that it gets cleared on
638 * the first operation that returns an error, while
639 * the PageError bit is more sticky and only cleared
640 * when the page is reread or dropped. If an
641 * application assumes it will always get error on
642 * fsync, but does other operations on the fd before
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300643 * and the page is dropped between then the error
Andi Kleen6a460792009-09-16 11:50:15 +0200644 * will not be properly reported.
645 *
646 * This can already happen even without hwpoisoned
647 * pages: first on metadata IO errors (which only
648 * report through AS_EIO) or when the page is dropped
649 * at the wrong time.
650 *
651 * So right now we assume that the application DTRT on
652 * the first EIO, but we're not worse than other parts
653 * of the kernel.
654 */
655 mapping_set_error(mapping, EIO);
656 }
657
658 return me_pagecache_clean(p, pfn);
659}
660
661/*
662 * Clean and dirty swap cache.
663 *
664 * Dirty swap cache page is tricky to handle. The page could live both in page
665 * cache and swap cache(ie. page is freshly swapped in). So it could be
666 * referenced concurrently by 2 types of PTEs:
667 * normal PTEs and swap PTEs. We try to handle them consistently by calling
668 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
669 * and then
670 * - clear dirty bit to prevent IO
671 * - remove from LRU
672 * - but keep in the swap cache, so that when we return to it on
673 * a later page fault, we know the application is accessing
674 * corrupted data and shall be killed (we installed simple
675 * interception code in do_swap_page to catch it).
676 *
677 * Clean swap cache pages can be directly isolated. A later page fault will
678 * bring in the known good data from disk.
679 */
680static int me_swapcache_dirty(struct page *p, unsigned long pfn)
681{
Andi Kleen6a460792009-09-16 11:50:15 +0200682 ClearPageDirty(p);
683 /* Trigger EIO in shmem: */
684 ClearPageUptodate(p);
685
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100686 if (!delete_from_lru_cache(p))
687 return DELAYED;
688 else
689 return FAILED;
Andi Kleen6a460792009-09-16 11:50:15 +0200690}
691
692static int me_swapcache_clean(struct page *p, unsigned long pfn)
693{
Andi Kleen6a460792009-09-16 11:50:15 +0200694 delete_from_swap_cache(p);
Wu Fengguange43c3af2009-09-29 13:16:20 +0800695
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100696 if (!delete_from_lru_cache(p))
697 return RECOVERED;
698 else
699 return FAILED;
Andi Kleen6a460792009-09-16 11:50:15 +0200700}
701
702/*
703 * Huge pages. Needs work.
704 * Issues:
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900705 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
706 * To narrow down kill region to one page, we need to break up pmd.
Andi Kleen6a460792009-09-16 11:50:15 +0200707 */
708static int me_huge_page(struct page *p, unsigned long pfn)
709{
Naoya Horiguchi6de2b1a2010-09-08 10:19:36 +0900710 int res = 0;
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900711 struct page *hpage = compound_head(p);
712 /*
713 * We can safely recover from error on free or reserved (i.e.
714 * not in-use) hugepage by dequeuing it from freelist.
715 * To check whether a hugepage is in-use or not, we can't use
716 * page->lru because it can be used in other hugepage operations,
717 * such as __unmap_hugepage_range() and gather_surplus_pages().
718 * So instead we use page_mapping() and PageAnon().
719 * We assume that this function is called with page lock held,
720 * so there is no race between isolation and mapping/unmapping.
721 */
722 if (!(page_mapping(hpage) || PageAnon(hpage))) {
Naoya Horiguchi6de2b1a2010-09-08 10:19:36 +0900723 res = dequeue_hwpoisoned_huge_page(hpage);
724 if (!res)
725 return RECOVERED;
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900726 }
727 return DELAYED;
Andi Kleen6a460792009-09-16 11:50:15 +0200728}
729
730/*
731 * Various page states we can handle.
732 *
733 * A page state is defined by its current page->flags bits.
734 * The table matches them in order and calls the right handler.
735 *
736 * This is quite tricky because we can access page at any time
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300737 * in its live cycle, so all accesses have to be extremely careful.
Andi Kleen6a460792009-09-16 11:50:15 +0200738 *
739 * This is not complete. More states could be added.
740 * For any missing state don't attempt recovery.
741 */
742
743#define dirty (1UL << PG_dirty)
744#define sc (1UL << PG_swapcache)
745#define unevict (1UL << PG_unevictable)
746#define mlock (1UL << PG_mlocked)
747#define writeback (1UL << PG_writeback)
748#define lru (1UL << PG_lru)
749#define swapbacked (1UL << PG_swapbacked)
750#define head (1UL << PG_head)
751#define tail (1UL << PG_tail)
752#define compound (1UL << PG_compound)
753#define slab (1UL << PG_slab)
Andi Kleen6a460792009-09-16 11:50:15 +0200754#define reserved (1UL << PG_reserved)
755
756static struct page_state {
757 unsigned long mask;
758 unsigned long res;
759 char *msg;
760 int (*action)(struct page *p, unsigned long pfn);
761} error_states[] = {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100762 { reserved, reserved, "reserved kernel", me_kernel },
Wu Fengguang95d01fc2009-12-16 12:19:58 +0100763 /*
764 * free pages are specially detected outside this table:
765 * PG_buddy pages only make a small fraction of all free pages.
766 */
Andi Kleen6a460792009-09-16 11:50:15 +0200767
768 /*
769 * Could in theory check if slab page is free or if we can drop
770 * currently unused objects without touching them. But just
771 * treat it as standard kernel for now.
772 */
773 { slab, slab, "kernel slab", me_kernel },
774
775#ifdef CONFIG_PAGEFLAGS_EXTENDED
776 { head, head, "huge", me_huge_page },
777 { tail, tail, "huge", me_huge_page },
778#else
779 { compound, compound, "huge", me_huge_page },
780#endif
781
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800782 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
783 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200784
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800785 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
Naoya Horiguchie3986292013-04-29 15:06:08 -0700786 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200787
Naoya Horiguchi5f4b9fc2013-02-22 16:35:53 -0800788 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
Naoya Horiguchie3986292013-04-29 15:06:08 -0700789 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
Naoya Horiguchi5f4b9fc2013-02-22 16:35:53 -0800790
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800791 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
Andi Kleen6a460792009-09-16 11:50:15 +0200792 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200793
794 /*
795 * Catchall entry: must be at end.
796 */
797 { 0, 0, "unknown page state", me_unknown },
798};
799
Andi Kleen2326c462009-12-16 12:20:00 +0100800#undef dirty
801#undef sc
802#undef unevict
803#undef mlock
804#undef writeback
805#undef lru
806#undef swapbacked
807#undef head
808#undef tail
809#undef compound
810#undef slab
811#undef reserved
812
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800813/*
814 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
815 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
816 */
Andi Kleen6a460792009-09-16 11:50:15 +0200817static void action_result(unsigned long pfn, char *msg, int result)
818{
Naoya Horiguchiff604cf2012-12-11 16:01:32 -0800819 pr_err("MCE %#lx: %s page recovery: %s\n",
820 pfn, msg, action_name[result]);
Andi Kleen6a460792009-09-16 11:50:15 +0200821}
822
823static int page_action(struct page_state *ps, struct page *p,
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +0100824 unsigned long pfn)
Andi Kleen6a460792009-09-16 11:50:15 +0200825{
826 int result;
Wu Fengguang7456b042009-10-19 08:15:01 +0200827 int count;
Andi Kleen6a460792009-09-16 11:50:15 +0200828
829 result = ps->action(p, pfn);
830 action_result(pfn, ps->msg, result);
Wu Fengguang7456b042009-10-19 08:15:01 +0200831
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +0100832 count = page_count(p) - 1;
Wu Fengguang138ce282009-12-16 12:19:58 +0100833 if (ps->action == me_swapcache_dirty && result == DELAYED)
834 count--;
835 if (count != 0) {
Andi Kleen6a460792009-09-16 11:50:15 +0200836 printk(KERN_ERR
837 "MCE %#lx: %s page still referenced by %d users\n",
Wu Fengguang7456b042009-10-19 08:15:01 +0200838 pfn, ps->msg, count);
Wu Fengguang138ce282009-12-16 12:19:58 +0100839 result = FAILED;
840 }
Andi Kleen6a460792009-09-16 11:50:15 +0200841
842 /* Could do more checks here if page looks ok */
843 /*
844 * Could adjust zone counters here to correct for the missing page.
845 */
846
Wu Fengguang138ce282009-12-16 12:19:58 +0100847 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
Andi Kleen6a460792009-09-16 11:50:15 +0200848}
849
Andi Kleen6a460792009-09-16 11:50:15 +0200850/*
851 * Do all that is necessary to remove user space mappings. Unmap
852 * the pages and send SIGBUS to the processes if the data was dirty.
853 */
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100854static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -0800855 int trapno, int flags, struct page **hpagep)
Andi Kleen6a460792009-09-16 11:50:15 +0200856{
857 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
858 struct address_space *mapping;
859 LIST_HEAD(tokill);
860 int ret;
Tony Luck6751ed62012-07-11 10:20:47 -0700861 int kill = 1, forcekill;
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -0800862 struct page *hpage = *hpagep;
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800863 struct page *ppage;
Andi Kleen6a460792009-09-16 11:50:15 +0200864
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100865 if (PageReserved(p) || PageSlab(p))
866 return SWAP_SUCCESS;
Andi Kleen6a460792009-09-16 11:50:15 +0200867
Andi Kleen6a460792009-09-16 11:50:15 +0200868 /*
869 * This check implies we don't kill processes if their pages
870 * are in the swap cache early. Those are always late kills.
871 */
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900872 if (!page_mapped(hpage))
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100873 return SWAP_SUCCESS;
874
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900875 if (PageKsm(p))
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100876 return SWAP_FAIL;
Andi Kleen6a460792009-09-16 11:50:15 +0200877
878 if (PageSwapCache(p)) {
879 printk(KERN_ERR
880 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
881 ttu |= TTU_IGNORE_HWPOISON;
882 }
883
884 /*
885 * Propagate the dirty bit from PTEs to struct page first, because we
886 * need this to decide if we should kill or just drop the page.
Wu Fengguangdb0480b2009-12-16 12:19:58 +0100887 * XXX: the dirty test could be racy: set_page_dirty() may not always
888 * be called inside page lock (it's recommended but not enforced).
Andi Kleen6a460792009-09-16 11:50:15 +0200889 */
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900890 mapping = page_mapping(hpage);
Tony Luck6751ed62012-07-11 10:20:47 -0700891 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900892 mapping_cap_writeback_dirty(mapping)) {
893 if (page_mkclean(hpage)) {
894 SetPageDirty(hpage);
Andi Kleen6a460792009-09-16 11:50:15 +0200895 } else {
896 kill = 0;
897 ttu |= TTU_IGNORE_HWPOISON;
898 printk(KERN_INFO
899 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
900 pfn);
901 }
902 }
903
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800904 /*
905 * ppage: poisoned page
906 * if p is regular page(4k page)
907 * ppage == real poisoned page;
908 * else p is hugetlb or THP, ppage == head page.
909 */
910 ppage = hpage;
911
Jin Dongmingefeda7a2011-02-01 15:52:39 -0800912 if (PageTransHuge(hpage)) {
913 /*
914 * Verify that this isn't a hugetlbfs head page, the check for
915 * PageAnon is just for avoid tripping a split_huge_page
916 * internal debug check, as split_huge_page refuses to deal with
917 * anything that isn't an anon page. PageAnon can't go away fro
918 * under us because we hold a refcount on the hpage, without a
919 * refcount on the hpage. split_huge_page can't be safely called
920 * in the first place, having a refcount on the tail isn't
921 * enough * to be safe.
922 */
923 if (!PageHuge(hpage) && PageAnon(hpage)) {
924 if (unlikely(split_huge_page(hpage))) {
925 /*
926 * FIXME: if splitting THP is failed, it is
927 * better to stop the following operation rather
928 * than causing panic by unmapping. System might
929 * survive if the page is freed later.
930 */
931 printk(KERN_INFO
932 "MCE %#lx: failed to split THP\n", pfn);
933
934 BUG_ON(!PageHWPoison(p));
935 return SWAP_FAIL;
936 }
Naoya Horiguchia3e0f9e2014-01-02 12:58:51 -0800937 /*
938 * We pinned the head page for hwpoison handling,
939 * now we split the thp and we are interested in
940 * the hwpoisoned raw page, so move the refcount
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -0800941 * to it. Similarly, page lock is shifted.
Naoya Horiguchia3e0f9e2014-01-02 12:58:51 -0800942 */
943 if (hpage != p) {
944 put_page(hpage);
945 get_page(p);
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -0800946 lock_page(p);
947 unlock_page(hpage);
948 *hpagep = p;
Naoya Horiguchia3e0f9e2014-01-02 12:58:51 -0800949 }
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800950 /* THP is split, so ppage should be the real poisoned page. */
951 ppage = p;
Jin Dongmingefeda7a2011-02-01 15:52:39 -0800952 }
953 }
954
Andi Kleen6a460792009-09-16 11:50:15 +0200955 /*
956 * First collect all the processes that have the page
957 * mapped in dirty form. This has to be done before try_to_unmap,
958 * because ttu takes the rmap data structures down.
959 *
960 * Error handling: We ignore errors here because
961 * there's nothing that can be done.
962 */
963 if (kill)
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800964 collect_procs(ppage, &tokill);
Andi Kleen6a460792009-09-16 11:50:15 +0200965
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800966 ret = try_to_unmap(ppage, ttu);
Andi Kleen6a460792009-09-16 11:50:15 +0200967 if (ret != SWAP_SUCCESS)
968 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800969 pfn, page_mapcount(ppage));
970
Andi Kleen6a460792009-09-16 11:50:15 +0200971 /*
972 * Now that the dirty bit has been propagated to the
973 * struct page and all unmaps done we can decide if
974 * killing is needed or not. Only kill when the page
Tony Luck6751ed62012-07-11 10:20:47 -0700975 * was dirty or the process is not restartable,
976 * otherwise the tokill list is merely
Andi Kleen6a460792009-09-16 11:50:15 +0200977 * freed. When there was a problem unmapping earlier
978 * use a more force-full uncatchable kill to prevent
979 * any accesses to the poisoned memory.
980 */
Tony Luck6751ed62012-07-11 10:20:47 -0700981 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
982 kill_procs(&tokill, forcekill, trapno,
Tony Luck7329bbe2011-12-13 09:27:58 -0800983 ret != SWAP_SUCCESS, p, pfn, flags);
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100984
985 return ret;
Andi Kleen6a460792009-09-16 11:50:15 +0200986}
987
Naoya Horiguchi7013feb2010-05-28 09:29:18 +0900988static void set_page_hwpoison_huge_page(struct page *hpage)
989{
990 int i;
Wanpeng Lif9121152013-09-11 14:22:52 -0700991 int nr_pages = 1 << compound_order(hpage);
Naoya Horiguchi7013feb2010-05-28 09:29:18 +0900992 for (i = 0; i < nr_pages; i++)
993 SetPageHWPoison(hpage + i);
994}
995
996static void clear_page_hwpoison_huge_page(struct page *hpage)
997{
998 int i;
Wanpeng Lif9121152013-09-11 14:22:52 -0700999 int nr_pages = 1 << compound_order(hpage);
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001000 for (i = 0; i < nr_pages; i++)
1001 ClearPageHWPoison(hpage + i);
1002}
1003
Tony Luckcd42f4a2011-12-15 10:48:12 -08001004/**
1005 * memory_failure - Handle memory failure of a page.
1006 * @pfn: Page Number of the corrupted page
1007 * @trapno: Trap number reported in the signal to user space.
1008 * @flags: fine tune action taken
1009 *
1010 * This function is called by the low level machine check code
1011 * of an architecture when it detects hardware memory corruption
1012 * of a page. It tries its best to recover, which includes
1013 * dropping pages, killing processes etc.
1014 *
1015 * The function is primarily of use for corruptions that
1016 * happen outside the current execution context (e.g. when
1017 * detected by a background scrubber)
1018 *
1019 * Must run in process context (e.g. a work queue) with interrupts
1020 * enabled and no spinlocks hold.
1021 */
1022int memory_failure(unsigned long pfn, int trapno, int flags)
Andi Kleen6a460792009-09-16 11:50:15 +02001023{
1024 struct page_state *ps;
1025 struct page *p;
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001026 struct page *hpage;
Andi Kleen6a460792009-09-16 11:50:15 +02001027 int res;
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001028 unsigned int nr_pages;
Naoya Horiguchi524fca12013-02-22 16:35:51 -08001029 unsigned long page_flags;
Andi Kleen6a460792009-09-16 11:50:15 +02001030
1031 if (!sysctl_memory_failure_recovery)
1032 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1033
1034 if (!pfn_valid(pfn)) {
Wu Fengguanga7560fc2009-12-16 12:19:57 +01001035 printk(KERN_ERR
1036 "MCE %#lx: memory outside kernel control\n",
1037 pfn);
1038 return -ENXIO;
Andi Kleen6a460792009-09-16 11:50:15 +02001039 }
1040
1041 p = pfn_to_page(pfn);
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001042 hpage = compound_head(p);
Andi Kleen6a460792009-09-16 11:50:15 +02001043 if (TestSetPageHWPoison(p)) {
Wu Fengguangd95ea512009-12-16 12:19:58 +01001044 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
Andi Kleen6a460792009-09-16 11:50:15 +02001045 return 0;
1046 }
1047
Naoya Horiguchi4db0e952013-02-22 16:34:05 -08001048 /*
1049 * Currently errors on hugetlbfs pages are measured in hugepage units,
1050 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1051 * transparent hugepages, they are supposed to be split and error
1052 * measurement is done in normal page units. So nr_pages should be one
1053 * in this case.
1054 */
1055 if (PageHuge(p))
1056 nr_pages = 1 << compound_order(hpage);
1057 else /* normal page or thp */
1058 nr_pages = 1;
Xishi Qiu293c07e2013-02-22 16:34:02 -08001059 atomic_long_add(nr_pages, &num_poisoned_pages);
Andi Kleen6a460792009-09-16 11:50:15 +02001060
1061 /*
1062 * We need/can do nothing about count=0 pages.
1063 * 1) it's a free page, and therefore in safe hand:
1064 * prep_new_page() will be the gate keeper.
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001065 * 2) it's a free hugepage, which is also safe:
1066 * an affected hugepage will be dequeued from hugepage freelist,
1067 * so there's no concern about reusing it ever after.
1068 * 3) it's part of a non-compound high order page.
Andi Kleen6a460792009-09-16 11:50:15 +02001069 * Implies some kernel user: cannot stop them from
1070 * R/W the page; let's pray that the page has been
1071 * used and will be freed some time later.
1072 * In fact it's dangerous to directly bump up page count from 0,
1073 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1074 */
Andi Kleen82ba0112009-12-16 12:19:57 +01001075 if (!(flags & MF_COUNT_INCREASED) &&
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001076 !get_page_unless_zero(hpage)) {
Wu Fengguang8d22ba12009-12-16 12:19:58 +01001077 if (is_free_buddy_page(p)) {
1078 action_result(pfn, "free buddy", DELAYED);
1079 return 0;
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001080 } else if (PageHuge(hpage)) {
1081 /*
1082 * Check "just unpoisoned", "filter hit", and
1083 * "race with other subpage."
1084 */
Jens Axboe7eaceac2011-03-10 08:52:07 +01001085 lock_page(hpage);
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001086 if (!PageHWPoison(hpage)
1087 || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1088 || (p != hpage && TestSetPageHWPoison(hpage))) {
Xishi Qiu293c07e2013-02-22 16:34:02 -08001089 atomic_long_sub(nr_pages, &num_poisoned_pages);
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001090 return 0;
1091 }
1092 set_page_hwpoison_huge_page(hpage);
1093 res = dequeue_hwpoisoned_huge_page(hpage);
1094 action_result(pfn, "free huge",
1095 res ? IGNORED : DELAYED);
1096 unlock_page(hpage);
1097 return res;
Wu Fengguang8d22ba12009-12-16 12:19:58 +01001098 } else {
1099 action_result(pfn, "high order kernel", IGNORED);
1100 return -EBUSY;
1101 }
Andi Kleen6a460792009-09-16 11:50:15 +02001102 }
1103
1104 /*
Wu Fengguange43c3af2009-09-29 13:16:20 +08001105 * We ignore non-LRU pages for good reasons.
1106 * - PG_locked is only well defined for LRU pages and a few others
1107 * - to avoid races with __set_page_locked()
1108 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1109 * The check (unnecessarily) ignores LRU pages being isolated and
1110 * walked by the page reclaim code, however that's not a big loss.
1111 */
Dean Nelson385de352012-03-21 16:34:05 -07001112 if (!PageHuge(p) && !PageTransTail(p)) {
Jin Dongmingaf241a02011-02-01 15:52:41 -08001113 if (!PageLRU(p))
1114 shake_page(p, 0);
1115 if (!PageLRU(p)) {
1116 /*
1117 * shake_page could have turned it free.
1118 */
1119 if (is_free_buddy_page(p)) {
Wanpeng Li2d421ac2013-09-30 13:45:23 -07001120 if (flags & MF_COUNT_INCREASED)
1121 action_result(pfn, "free buddy", DELAYED);
1122 else
1123 action_result(pfn, "free buddy, 2nd try", DELAYED);
Jin Dongmingaf241a02011-02-01 15:52:41 -08001124 return 0;
1125 }
1126 action_result(pfn, "non LRU", IGNORED);
1127 put_page(p);
1128 return -EBUSY;
Andi Kleen0474a602009-12-16 12:20:00 +01001129 }
Wu Fengguange43c3af2009-09-29 13:16:20 +08001130 }
Wu Fengguange43c3af2009-09-29 13:16:20 +08001131
1132 /*
Andi Kleen6a460792009-09-16 11:50:15 +02001133 * Lock the page and wait for writeback to finish.
1134 * It's very difficult to mess with pages currently under IO
1135 * and in many cases impossible, so we just avoid it here.
1136 */
Jens Axboe7eaceac2011-03-10 08:52:07 +01001137 lock_page(hpage);
Wu Fengguang847ce402009-12-16 12:19:58 +01001138
1139 /*
Naoya Horiguchi524fca12013-02-22 16:35:51 -08001140 * We use page flags to determine what action should be taken, but
1141 * the flags can be modified by the error containment action. One
1142 * example is an mlocked page, where PG_mlocked is cleared by
1143 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1144 * correctly, we save a copy of the page flags at this time.
1145 */
1146 page_flags = p->flags;
1147
1148 /*
Wu Fengguang847ce402009-12-16 12:19:58 +01001149 * unpoison always clear PG_hwpoison inside page lock
1150 */
1151 if (!PageHWPoison(p)) {
Wu Fengguangd95ea512009-12-16 12:19:58 +01001152 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
Wu Fengguang847ce402009-12-16 12:19:58 +01001153 res = 0;
1154 goto out;
1155 }
Wu Fengguang7c116f22009-12-16 12:19:59 +01001156 if (hwpoison_filter(p)) {
1157 if (TestClearPageHWPoison(p))
Xishi Qiu293c07e2013-02-22 16:34:02 -08001158 atomic_long_sub(nr_pages, &num_poisoned_pages);
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001159 unlock_page(hpage);
1160 put_page(hpage);
Wu Fengguang7c116f22009-12-16 12:19:59 +01001161 return 0;
1162 }
Wu Fengguang847ce402009-12-16 12:19:58 +01001163
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001164 /*
1165 * For error on the tail page, we should set PG_hwpoison
1166 * on the head page to show that the hugepage is hwpoisoned
1167 */
Jin Dongminga6d30dd2011-02-01 15:52:40 -08001168 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001169 action_result(pfn, "hugepage already hardware poisoned",
1170 IGNORED);
1171 unlock_page(hpage);
1172 put_page(hpage);
1173 return 0;
1174 }
1175 /*
1176 * Set PG_hwpoison on all pages in an error hugepage,
1177 * because containment is done in hugepage unit for now.
1178 * Since we have done TestSetPageHWPoison() for the head page with
1179 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1180 */
1181 if (PageHuge(p))
1182 set_page_hwpoison_huge_page(hpage);
1183
Andi Kleen6a460792009-09-16 11:50:15 +02001184 wait_on_page_writeback(p);
1185
1186 /*
1187 * Now take care of user space mappings.
Minchan Kime64a7822011-03-22 16:32:44 -07001188 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -08001189 *
1190 * When the raw error page is thp tail page, hpage points to the raw
1191 * page after thp split.
Andi Kleen6a460792009-09-16 11:50:15 +02001192 */
Naoya Horiguchi54b9dd12014-01-23 15:53:14 -08001193 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1194 != SWAP_SUCCESS) {
Wu Fengguang1668bfd2009-12-16 12:19:58 +01001195 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1196 res = -EBUSY;
1197 goto out;
1198 }
Andi Kleen6a460792009-09-16 11:50:15 +02001199
1200 /*
1201 * Torn down by someone else?
1202 */
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +01001203 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
Andi Kleen6a460792009-09-16 11:50:15 +02001204 action_result(pfn, "already truncated LRU", IGNORED);
Wu Fengguangd95ea512009-12-16 12:19:58 +01001205 res = -EBUSY;
Andi Kleen6a460792009-09-16 11:50:15 +02001206 goto out;
1207 }
1208
1209 res = -EBUSY;
Naoya Horiguchi524fca12013-02-22 16:35:51 -08001210 /*
1211 * The first check uses the current page flags which may not have any
1212 * relevant information. The second check with the saved page flagss is
1213 * carried out only if the first check can't determine the page status.
1214 */
1215 for (ps = error_states;; ps++)
1216 if ((p->flags & ps->mask) == ps->res)
Andi Kleen6a460792009-09-16 11:50:15 +02001217 break;
Wanpeng Li841fcc52013-09-11 14:22:50 -07001218
1219 page_flags |= (p->flags & (1UL << PG_dirty));
1220
Naoya Horiguchi524fca12013-02-22 16:35:51 -08001221 if (!ps->mask)
1222 for (ps = error_states;; ps++)
1223 if ((page_flags & ps->mask) == ps->res)
1224 break;
1225 res = page_action(ps, p, pfn);
Andi Kleen6a460792009-09-16 11:50:15 +02001226out:
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001227 unlock_page(hpage);
Andi Kleen6a460792009-09-16 11:50:15 +02001228 return res;
1229}
Tony Luckcd42f4a2011-12-15 10:48:12 -08001230EXPORT_SYMBOL_GPL(memory_failure);
Wu Fengguang847ce402009-12-16 12:19:58 +01001231
Huang Yingea8f5fb2011-07-13 13:14:27 +08001232#define MEMORY_FAILURE_FIFO_ORDER 4
1233#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1234
1235struct memory_failure_entry {
1236 unsigned long pfn;
1237 int trapno;
1238 int flags;
1239};
1240
1241struct memory_failure_cpu {
1242 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1243 MEMORY_FAILURE_FIFO_SIZE);
1244 spinlock_t lock;
1245 struct work_struct work;
1246};
1247
1248static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1249
1250/**
1251 * memory_failure_queue - Schedule handling memory failure of a page.
1252 * @pfn: Page Number of the corrupted page
1253 * @trapno: Trap number reported in the signal to user space.
1254 * @flags: Flags for memory failure handling
1255 *
1256 * This function is called by the low level hardware error handler
1257 * when it detects hardware memory corruption of a page. It schedules
1258 * the recovering of error page, including dropping pages, killing
1259 * processes etc.
1260 *
1261 * The function is primarily of use for corruptions that
1262 * happen outside the current execution context (e.g. when
1263 * detected by a background scrubber)
1264 *
1265 * Can run in IRQ context.
1266 */
1267void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1268{
1269 struct memory_failure_cpu *mf_cpu;
1270 unsigned long proc_flags;
1271 struct memory_failure_entry entry = {
1272 .pfn = pfn,
1273 .trapno = trapno,
1274 .flags = flags,
1275 };
1276
1277 mf_cpu = &get_cpu_var(memory_failure_cpu);
1278 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
Stefani Seibold498d3192013-11-14 14:32:17 -08001279 if (kfifo_put(&mf_cpu->fifo, entry))
Huang Yingea8f5fb2011-07-13 13:14:27 +08001280 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1281 else
Joe Perches8e33a522013-07-25 11:53:25 -07001282 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
Huang Yingea8f5fb2011-07-13 13:14:27 +08001283 pfn);
1284 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1285 put_cpu_var(memory_failure_cpu);
1286}
1287EXPORT_SYMBOL_GPL(memory_failure_queue);
1288
1289static void memory_failure_work_func(struct work_struct *work)
1290{
1291 struct memory_failure_cpu *mf_cpu;
1292 struct memory_failure_entry entry = { 0, };
1293 unsigned long proc_flags;
1294 int gotten;
1295
1296 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1297 for (;;) {
1298 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1299 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1300 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1301 if (!gotten)
1302 break;
Naveen N. Raocf870c72013-07-10 14:57:01 +05301303 if (entry.flags & MF_SOFT_OFFLINE)
1304 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1305 else
1306 memory_failure(entry.pfn, entry.trapno, entry.flags);
Huang Yingea8f5fb2011-07-13 13:14:27 +08001307 }
1308}
1309
1310static int __init memory_failure_init(void)
1311{
1312 struct memory_failure_cpu *mf_cpu;
1313 int cpu;
1314
1315 for_each_possible_cpu(cpu) {
1316 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1317 spin_lock_init(&mf_cpu->lock);
1318 INIT_KFIFO(mf_cpu->fifo);
1319 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1320 }
1321
1322 return 0;
1323}
1324core_initcall(memory_failure_init);
1325
Wu Fengguang847ce402009-12-16 12:19:58 +01001326/**
1327 * unpoison_memory - Unpoison a previously poisoned page
1328 * @pfn: Page number of the to be unpoisoned page
1329 *
1330 * Software-unpoison a page that has been poisoned by
1331 * memory_failure() earlier.
1332 *
1333 * This is only done on the software-level, so it only works
1334 * for linux injected failures, not real hardware failures
1335 *
1336 * Returns 0 for success, otherwise -errno.
1337 */
1338int unpoison_memory(unsigned long pfn)
1339{
1340 struct page *page;
1341 struct page *p;
1342 int freeit = 0;
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001343 unsigned int nr_pages;
Wu Fengguang847ce402009-12-16 12:19:58 +01001344
1345 if (!pfn_valid(pfn))
1346 return -ENXIO;
1347
1348 p = pfn_to_page(pfn);
1349 page = compound_head(p);
1350
1351 if (!PageHWPoison(p)) {
Andi Kleenfb46e732010-09-27 23:31:30 +02001352 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
Wu Fengguang847ce402009-12-16 12:19:58 +01001353 return 0;
1354 }
1355
Wanpeng Li0cea3fd2013-09-11 14:22:53 -07001356 /*
1357 * unpoison_memory() can encounter thp only when the thp is being
1358 * worked by memory_failure() and the page lock is not held yet.
1359 * In such case, we yield to memory_failure() and make unpoison fail.
1360 */
Wanpeng Lie76d30e2013-09-30 13:45:22 -07001361 if (!PageHuge(page) && PageTransHuge(page)) {
Wanpeng Li0cea3fd2013-09-11 14:22:53 -07001362 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1363 return 0;
1364 }
1365
Wanpeng Lif9121152013-09-11 14:22:52 -07001366 nr_pages = 1 << compound_order(page);
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001367
Wu Fengguang847ce402009-12-16 12:19:58 +01001368 if (!get_page_unless_zero(page)) {
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001369 /*
1370 * Since HWPoisoned hugepage should have non-zero refcount,
1371 * race between memory failure and unpoison seems to happen.
1372 * In such case unpoison fails and memory failure runs
1373 * to the end.
1374 */
1375 if (PageHuge(page)) {
Dean Nelsondd73e852011-10-31 17:09:04 -07001376 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001377 return 0;
1378 }
Wu Fengguang847ce402009-12-16 12:19:58 +01001379 if (TestClearPageHWPoison(p))
Wanpeng Lidd9538a2013-09-11 14:22:54 -07001380 atomic_long_dec(&num_poisoned_pages);
Andi Kleenfb46e732010-09-27 23:31:30 +02001381 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
Wu Fengguang847ce402009-12-16 12:19:58 +01001382 return 0;
1383 }
1384
Jens Axboe7eaceac2011-03-10 08:52:07 +01001385 lock_page(page);
Wu Fengguang847ce402009-12-16 12:19:58 +01001386 /*
1387 * This test is racy because PG_hwpoison is set outside of page lock.
1388 * That's acceptable because that won't trigger kernel panic. Instead,
1389 * the PG_hwpoison page will be caught and isolated on the entrance to
1390 * the free buddy page pool.
1391 */
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001392 if (TestClearPageHWPoison(page)) {
Andi Kleenfb46e732010-09-27 23:31:30 +02001393 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
Xishi Qiu293c07e2013-02-22 16:34:02 -08001394 atomic_long_sub(nr_pages, &num_poisoned_pages);
Wu Fengguang847ce402009-12-16 12:19:58 +01001395 freeit = 1;
Naoya Horiguchi6a901812010-09-08 10:19:40 +09001396 if (PageHuge(page))
1397 clear_page_hwpoison_huge_page(page);
Wu Fengguang847ce402009-12-16 12:19:58 +01001398 }
1399 unlock_page(page);
1400
1401 put_page(page);
Wanpeng Li3ba5eeb2013-09-11 14:23:01 -07001402 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
Wu Fengguang847ce402009-12-16 12:19:58 +01001403 put_page(page);
1404
1405 return 0;
1406}
1407EXPORT_SYMBOL(unpoison_memory);
Andi Kleenfacb6012009-12-16 12:20:00 +01001408
1409static struct page *new_page(struct page *p, unsigned long private, int **x)
1410{
Andi Kleen12686d12009-12-16 12:20:01 +01001411 int nid = page_to_nid(p);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001412 if (PageHuge(p))
1413 return alloc_huge_page_node(page_hstate(compound_head(p)),
1414 nid);
1415 else
1416 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
Andi Kleenfacb6012009-12-16 12:20:00 +01001417}
1418
1419/*
1420 * Safely get reference count of an arbitrary page.
1421 * Returns 0 for a free page, -EIO for a zero refcount page
1422 * that is not free, and 1 for any other page type.
1423 * For 1 the page is returned with increased page count, otherwise not.
1424 */
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001425static int __get_any_page(struct page *p, unsigned long pfn, int flags)
Andi Kleenfacb6012009-12-16 12:20:00 +01001426{
1427 int ret;
1428
1429 if (flags & MF_COUNT_INCREASED)
1430 return 1;
1431
1432 /*
Naoya Horiguchid950b952010-09-08 10:19:39 +09001433 * When the target page is a free hugepage, just remove it
1434 * from free hugepage list.
1435 */
Andi Kleenfacb6012009-12-16 12:20:00 +01001436 if (!get_page_unless_zero(compound_head(p))) {
Naoya Horiguchid950b952010-09-08 10:19:39 +09001437 if (PageHuge(p)) {
Borislav Petkov71dd0b82012-05-29 15:06:16 -07001438 pr_info("%s: %#lx free huge page\n", __func__, pfn);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001439 ret = 0;
Naoya Horiguchid950b952010-09-08 10:19:39 +09001440 } else if (is_free_buddy_page(p)) {
Borislav Petkov71dd0b82012-05-29 15:06:16 -07001441 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
Andi Kleenfacb6012009-12-16 12:20:00 +01001442 ret = 0;
1443 } else {
Borislav Petkov71dd0b82012-05-29 15:06:16 -07001444 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1445 __func__, pfn, p->flags);
Andi Kleenfacb6012009-12-16 12:20:00 +01001446 ret = -EIO;
1447 }
1448 } else {
1449 /* Not a free page */
1450 ret = 1;
1451 }
Andi Kleenfacb6012009-12-16 12:20:00 +01001452 return ret;
1453}
1454
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001455static int get_any_page(struct page *page, unsigned long pfn, int flags)
1456{
1457 int ret = __get_any_page(page, pfn, flags);
1458
1459 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1460 /*
1461 * Try to free it.
1462 */
1463 put_page(page);
1464 shake_page(page, 1);
1465
1466 /*
1467 * Did it turn free?
1468 */
1469 ret = __get_any_page(page, pfn, 0);
1470 if (!PageLRU(page)) {
1471 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1472 pfn, page->flags);
1473 return -EIO;
1474 }
1475 }
1476 return ret;
1477}
1478
Naoya Horiguchid950b952010-09-08 10:19:39 +09001479static int soft_offline_huge_page(struct page *page, int flags)
1480{
1481 int ret;
1482 unsigned long pfn = page_to_pfn(page);
1483 struct page *hpage = compound_head(page);
Naoya Horiguchib8ec1ce2013-09-11 14:22:01 -07001484 LIST_HEAD(pagelist);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001485
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001486 /*
1487 * This double-check of PageHWPoison is to avoid the race with
1488 * memory_failure(). See also comment in __soft_offline_page().
1489 */
1490 lock_page(hpage);
Xishi Qiu0ebff322013-02-22 16:33:59 -08001491 if (PageHWPoison(hpage)) {
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001492 unlock_page(hpage);
1493 put_page(hpage);
Xishi Qiu0ebff322013-02-22 16:33:59 -08001494 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001495 return -EBUSY;
Xishi Qiu0ebff322013-02-22 16:33:59 -08001496 }
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001497 unlock_page(hpage);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001498
Naoya Horiguchid950b952010-09-08 10:19:39 +09001499 /* Keep page count to indicate a given hugepage is isolated. */
Naoya Horiguchib8ec1ce2013-09-11 14:22:01 -07001500 list_move(&hpage->lru, &pagelist);
1501 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1502 MIGRATE_SYNC, MR_MEMORY_FAILURE);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001503 if (ret) {
Dean Nelsondd73e852011-10-31 17:09:04 -07001504 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1505 pfn, ret, page->flags);
Naoya Horiguchib8ec1ce2013-09-11 14:22:01 -07001506 /*
1507 * We know that soft_offline_huge_page() tries to migrate
1508 * only one hugepage pointed to by hpage, so we need not
1509 * run through the pagelist here.
1510 */
1511 putback_active_hugepage(hpage);
1512 if (ret > 0)
1513 ret = -EIO;
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001514 } else {
Jianguo Wua49ecbc2013-12-18 17:08:54 -08001515 /* overcommit hugetlb page will be freed to buddy */
1516 if (PageHuge(page)) {
1517 set_page_hwpoison_huge_page(hpage);
1518 dequeue_hwpoisoned_huge_page(hpage);
1519 atomic_long_add(1 << compound_order(hpage),
1520 &num_poisoned_pages);
1521 } else {
1522 SetPageHWPoison(page);
1523 atomic_long_inc(&num_poisoned_pages);
1524 }
Naoya Horiguchid950b952010-09-08 10:19:39 +09001525 }
Naoya Horiguchid950b952010-09-08 10:19:39 +09001526 return ret;
1527}
1528
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001529static int __soft_offline_page(struct page *page, int flags)
1530{
1531 int ret;
1532 unsigned long pfn = page_to_pfn(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001533
1534 /*
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001535 * Check PageHWPoison again inside page lock because PageHWPoison
1536 * is set by memory_failure() outside page lock. Note that
1537 * memory_failure() also double-checks PageHWPoison inside page lock,
1538 * so there's no race between soft_offline_page() and memory_failure().
Andi Kleenfacb6012009-12-16 12:20:00 +01001539 */
Xishi Qiu0ebff322013-02-22 16:33:59 -08001540 lock_page(page);
1541 wait_on_page_writeback(page);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001542 if (PageHWPoison(page)) {
1543 unlock_page(page);
1544 put_page(page);
1545 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1546 return -EBUSY;
1547 }
Andi Kleenfacb6012009-12-16 12:20:00 +01001548 /*
1549 * Try to invalidate first. This should work for
1550 * non dirty unmapped page cache pages.
1551 */
1552 ret = invalidate_inode_page(page);
1553 unlock_page(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001554 /*
Andi Kleenfacb6012009-12-16 12:20:00 +01001555 * RED-PEN would be better to keep it isolated here, but we
1556 * would need to fix isolation locking first.
1557 */
Andi Kleenfacb6012009-12-16 12:20:00 +01001558 if (ret == 1) {
Konstantin Khlebnikovbd486282011-05-24 17:12:20 -07001559 put_page(page);
Andi Kleenfb46e732010-09-27 23:31:30 +02001560 pr_info("soft_offline: %#lx: invalidated\n", pfn);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001561 SetPageHWPoison(page);
1562 atomic_long_inc(&num_poisoned_pages);
1563 return 0;
Andi Kleenfacb6012009-12-16 12:20:00 +01001564 }
1565
1566 /*
1567 * Simple invalidation didn't work.
1568 * Try to migrate to a new page instead. migrate.c
1569 * handles a large number of cases for us.
1570 */
1571 ret = isolate_lru_page(page);
Konstantin Khlebnikovbd486282011-05-24 17:12:20 -07001572 /*
1573 * Drop page reference which is came from get_any_page()
1574 * successful isolate_lru_page() already took another one.
1575 */
1576 put_page(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001577 if (!ret) {
1578 LIST_HEAD(pagelist);
Minchan Kim5db8a732011-06-15 15:08:48 -07001579 inc_zone_page_state(page, NR_ISOLATED_ANON +
Hugh Dickins9c620e22013-02-22 16:35:14 -08001580 page_is_file_cache(page));
Andi Kleenfacb6012009-12-16 12:20:00 +01001581 list_add(&page->lru, &pagelist);
Mel Gorman77f1fe62011-01-13 15:45:57 -08001582 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
Hugh Dickins9c620e22013-02-22 16:35:14 -08001583 MIGRATE_SYNC, MR_MEMORY_FAILURE);
Andi Kleenfacb6012009-12-16 12:20:00 +01001584 if (ret) {
Joonsoo Kim59c82b72014-01-21 15:51:17 -08001585 if (!list_empty(&pagelist)) {
1586 list_del(&page->lru);
1587 dec_zone_page_state(page, NR_ISOLATED_ANON +
1588 page_is_file_cache(page));
1589 putback_lru_page(page);
1590 }
1591
Andi Kleenfb46e732010-09-27 23:31:30 +02001592 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
Andi Kleenfacb6012009-12-16 12:20:00 +01001593 pfn, ret, page->flags);
1594 if (ret > 0)
1595 ret = -EIO;
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001596 } else {
Naoya Horiguchif15bdfa2013-07-03 15:02:37 -07001597 /*
1598 * After page migration succeeds, the source page can
1599 * be trapped in pagevec and actual freeing is delayed.
1600 * Freeing code works differently based on PG_hwpoison,
1601 * so there's a race. We need to make sure that the
1602 * source page should be freed back to buddy before
1603 * setting PG_hwpoison.
1604 */
1605 if (!is_free_buddy_page(page))
1606 lru_add_drain_all();
1607 if (!is_free_buddy_page(page))
1608 drain_all_pages();
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001609 SetPageHWPoison(page);
Naoya Horiguchif15bdfa2013-07-03 15:02:37 -07001610 if (!is_free_buddy_page(page))
1611 pr_info("soft offline: %#lx: page leaked\n",
1612 pfn);
Naoya Horiguchiaf8fae72013-02-22 16:34:03 -08001613 atomic_long_inc(&num_poisoned_pages);
Andi Kleenfacb6012009-12-16 12:20:00 +01001614 }
1615 } else {
Andi Kleenfb46e732010-09-27 23:31:30 +02001616 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
Dean Nelsondd73e852011-10-31 17:09:04 -07001617 pfn, ret, page_count(page), page->flags);
Andi Kleenfacb6012009-12-16 12:20:00 +01001618 }
Andi Kleenfacb6012009-12-16 12:20:00 +01001619 return ret;
1620}
Wanpeng Li86e05772013-09-11 14:22:56 -07001621
1622/**
1623 * soft_offline_page - Soft offline a page.
1624 * @page: page to offline
1625 * @flags: flags. Same as memory_failure().
1626 *
1627 * Returns 0 on success, otherwise negated errno.
1628 *
1629 * Soft offline a page, by migration or invalidation,
1630 * without killing anything. This is for the case when
1631 * a page is not corrupted yet (so it's still valid to access),
1632 * but has had a number of corrected errors and is better taken
1633 * out.
1634 *
1635 * The actual policy on when to do that is maintained by
1636 * user space.
1637 *
1638 * This should never impact any application or cause data loss,
1639 * however it might take some time.
1640 *
1641 * This is not a 100% solution for all memory, but tries to be
1642 * ``good enough'' for the majority of memory.
1643 */
1644int soft_offline_page(struct page *page, int flags)
1645{
1646 int ret;
1647 unsigned long pfn = page_to_pfn(page);
1648 struct page *hpage = compound_trans_head(page);
1649
1650 if (PageHWPoison(page)) {
1651 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1652 return -EBUSY;
1653 }
1654 if (!PageHuge(page) && PageTransHuge(hpage)) {
1655 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1656 pr_info("soft offline: %#lx: failed to split THP\n",
1657 pfn);
1658 return -EBUSY;
1659 }
1660 }
1661
Naoya Horiguchi03b61ff2013-11-12 15:07:26 -08001662 /*
1663 * The lock_memory_hotplug prevents a race with memory hotplug.
1664 * This is a big hammer, a better would be nicer.
1665 */
1666 lock_memory_hotplug();
1667
1668 /*
1669 * Isolate the page, so that it doesn't get reallocated if it
1670 * was free. This flag should be kept set until the source page
1671 * is freed and PG_hwpoison on it is set.
1672 */
1673 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1674 set_migratetype_isolate(page, true);
1675
Wanpeng Li86e05772013-09-11 14:22:56 -07001676 ret = get_any_page(page, pfn, flags);
Naoya Horiguchi03b61ff2013-11-12 15:07:26 -08001677 unlock_memory_hotplug();
1678 if (ret > 0) { /* for in-use pages */
Wanpeng Li86e05772013-09-11 14:22:56 -07001679 if (PageHuge(page))
1680 ret = soft_offline_huge_page(page, flags);
1681 else
1682 ret = __soft_offline_page(page, flags);
Naoya Horiguchi03b61ff2013-11-12 15:07:26 -08001683 } else if (ret == 0) { /* for free pages */
Wanpeng Li86e05772013-09-11 14:22:56 -07001684 if (PageHuge(page)) {
1685 set_page_hwpoison_huge_page(hpage);
1686 dequeue_hwpoisoned_huge_page(hpage);
1687 atomic_long_add(1 << compound_order(hpage),
1688 &num_poisoned_pages);
1689 } else {
1690 SetPageHWPoison(page);
1691 atomic_long_inc(&num_poisoned_pages);
1692 }
1693 }
Wanpeng Li86e05772013-09-11 14:22:56 -07001694 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1695 return ret;
1696}