Kristian Høgsberg | d7c1726 | 2012-09-05 21:54:15 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright © 2012 Intel Corporation |
| 3 | * |
| 4 | * Permission to use, copy, modify, distribute, and sell this software and |
| 5 | * its documentation for any purpose is hereby granted without fee, provided |
| 6 | * that the above copyright notice appear in all copies and that both that |
| 7 | * copyright notice and this permission notice appear in supporting |
| 8 | * documentation, and that the name of the copyright holders not be used in |
| 9 | * advertising or publicity pertaining to distribution of the software |
| 10 | * without specific, written prior permission. The copyright holders make |
| 11 | * no representations about the suitability of this software for any |
| 12 | * purpose. It is provided "as is" without express or implied warranty. |
| 13 | * |
| 14 | * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS |
| 15 | * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND |
| 16 | * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY |
| 17 | * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER |
| 18 | * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF |
| 19 | * CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 20 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 21 | */ |
| 22 | |
Kristian Høgsberg | ecf6ede | 2012-09-05 21:59:35 -0400 | [diff] [blame^] | 23 | #include <stdlib.h> |
| 24 | |
Kristian Høgsberg | d7c1726 | 2012-09-05 21:54:15 -0400 | [diff] [blame] | 25 | #include "compositor.h" |
| 26 | |
| 27 | static const char * |
| 28 | egl_error_string(EGLint code) |
| 29 | { |
| 30 | #define MYERRCODE(x) case x: return #x; |
| 31 | switch (code) { |
| 32 | MYERRCODE(EGL_SUCCESS) |
| 33 | MYERRCODE(EGL_NOT_INITIALIZED) |
| 34 | MYERRCODE(EGL_BAD_ACCESS) |
| 35 | MYERRCODE(EGL_BAD_ALLOC) |
| 36 | MYERRCODE(EGL_BAD_ATTRIBUTE) |
| 37 | MYERRCODE(EGL_BAD_CONTEXT) |
| 38 | MYERRCODE(EGL_BAD_CONFIG) |
| 39 | MYERRCODE(EGL_BAD_CURRENT_SURFACE) |
| 40 | MYERRCODE(EGL_BAD_DISPLAY) |
| 41 | MYERRCODE(EGL_BAD_SURFACE) |
| 42 | MYERRCODE(EGL_BAD_MATCH) |
| 43 | MYERRCODE(EGL_BAD_PARAMETER) |
| 44 | MYERRCODE(EGL_BAD_NATIVE_PIXMAP) |
| 45 | MYERRCODE(EGL_BAD_NATIVE_WINDOW) |
| 46 | MYERRCODE(EGL_CONTEXT_LOST) |
| 47 | default: |
| 48 | return "unknown"; |
| 49 | } |
| 50 | #undef MYERRCODE |
| 51 | } |
| 52 | |
| 53 | static void |
| 54 | print_egl_error_state(void) |
| 55 | { |
| 56 | EGLint code; |
| 57 | |
| 58 | code = eglGetError(); |
| 59 | weston_log("EGL error state: %s (0x%04lx)\n", |
| 60 | egl_error_string(code), (long)code); |
| 61 | } |
| 62 | |
Kristian Høgsberg | ecf6ede | 2012-09-05 21:59:35 -0400 | [diff] [blame^] | 63 | #define max(a, b) (((a) > (b)) ? (a) : (b)) |
| 64 | #define min(a, b) (((a) > (b)) ? (b) : (a)) |
| 65 | #define clip(x, a, b) min(max(x, a), b) |
| 66 | #define sign(x) ((x) >= 0) |
| 67 | |
| 68 | static int |
| 69 | calculate_edges(struct weston_surface *es, pixman_box32_t *rect, |
| 70 | pixman_box32_t *surf_rect, GLfloat *ex, GLfloat *ey) |
| 71 | { |
| 72 | int i, n = 0; |
| 73 | GLfloat min_x, max_x, min_y, max_y; |
| 74 | GLfloat x[4] = { |
| 75 | surf_rect->x1, surf_rect->x2, surf_rect->x2, surf_rect->x1, |
| 76 | }; |
| 77 | GLfloat y[4] = { |
| 78 | surf_rect->y1, surf_rect->y1, surf_rect->y2, surf_rect->y2, |
| 79 | }; |
| 80 | GLfloat cx1 = rect->x1; |
| 81 | GLfloat cx2 = rect->x2; |
| 82 | GLfloat cy1 = rect->y1; |
| 83 | GLfloat cy2 = rect->y2; |
| 84 | |
| 85 | GLfloat dist_squared(GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2) |
| 86 | { |
| 87 | GLfloat dx = (x1 - x2); |
| 88 | GLfloat dy = (y1 - y2); |
| 89 | return dx * dx + dy * dy; |
| 90 | } |
| 91 | |
| 92 | void append_vertex(GLfloat x, GLfloat y) |
| 93 | { |
| 94 | /* don't emit duplicate vertices: */ |
| 95 | if ((n > 0) && (ex[n-1] == x) && (ey[n-1] == y)) |
| 96 | return; |
| 97 | ex[n] = x; |
| 98 | ey[n] = y; |
| 99 | n++; |
| 100 | } |
| 101 | |
| 102 | /* transform surface to screen space: */ |
| 103 | for (i = 0; i < 4; i++) |
| 104 | weston_surface_to_global_float(es, x[i], y[i], &x[i], &y[i]); |
| 105 | |
| 106 | /* find bounding box: */ |
| 107 | min_x = max_x = x[0]; |
| 108 | min_y = max_y = y[0]; |
| 109 | |
| 110 | for (i = 1; i < 4; i++) { |
| 111 | min_x = min(min_x, x[i]); |
| 112 | max_x = max(max_x, x[i]); |
| 113 | min_y = min(min_y, y[i]); |
| 114 | max_y = max(max_y, y[i]); |
| 115 | } |
| 116 | |
| 117 | /* First, simple bounding box check to discard early transformed |
| 118 | * surface rects that do not intersect with the clip region: |
| 119 | */ |
| 120 | if ((min_x > cx2) || (max_x < cx1) || |
| 121 | (min_y > cy2) || (max_y < cy1)) |
| 122 | return 0; |
| 123 | |
| 124 | /* Simple case, bounding box edges are parallel to surface edges, |
| 125 | * there will be only four edges. We just need to clip the surface |
| 126 | * vertices to the clip rect bounds: |
| 127 | */ |
| 128 | if (!es->transform.enabled) { |
| 129 | for (i = 0; i < 4; i++) { |
| 130 | ex[n] = clip(x[i], cx1, cx2); |
| 131 | ey[n] = clip(y[i], cy1, cy2); |
| 132 | n++; |
| 133 | } |
| 134 | return 4; |
| 135 | } |
| 136 | |
| 137 | /* Hard case, transformation applied. We need to find the vertices |
| 138 | * of the shape that is the intersection of the clip rect and |
| 139 | * transformed surface. This can be anything from 3 to 8 sides. |
| 140 | * |
| 141 | * Observation: all the resulting vertices will be the intersection |
| 142 | * points of the transformed surface and the clip rect, plus the |
| 143 | * vertices of the clip rect which are enclosed by the transformed |
| 144 | * surface and the vertices of the transformed surface which are |
| 145 | * enclosed by the clip rect. |
| 146 | * |
| 147 | * Observation: there will be zero, one, or two resulting vertices |
| 148 | * for each edge of the src rect. |
| 149 | * |
| 150 | * Loop over four edges of the transformed rect: |
| 151 | */ |
| 152 | for (i = 0; i < 4; i++) { |
| 153 | GLfloat x1, y1, x2, y2; |
| 154 | int last_n = n; |
| 155 | |
| 156 | x1 = x[i]; |
| 157 | y1 = y[i]; |
| 158 | |
| 159 | /* if this vertex is contained in the clip rect, use it as-is: */ |
| 160 | if ((cx1 <= x1) && (x1 <= cx2) && |
| 161 | (cy1 <= y1) && (y1 <= cy2)) |
| 162 | append_vertex(x1, y1); |
| 163 | |
| 164 | /* for remaining, we consider the point as part of a line: */ |
| 165 | x2 = x[(i+1) % 4]; |
| 166 | y2 = y[(i+1) % 4]; |
| 167 | |
| 168 | if (x1 == x2) { |
| 169 | append_vertex(clip(x1, cx1, cx2), clip(y1, cy1, cy2)); |
| 170 | append_vertex(clip(x2, cx1, cx2), clip(y2, cy1, cy2)); |
| 171 | } else if (y1 == y2) { |
| 172 | append_vertex(clip(x1, cx1, cx2), clip(y1, cy1, cy2)); |
| 173 | append_vertex(clip(x2, cx1, cx2), clip(y2, cy1, cy2)); |
| 174 | } else { |
| 175 | GLfloat m, c, p; |
| 176 | GLfloat tx[2], ty[2]; |
| 177 | int tn = 0; |
| 178 | |
| 179 | int intersect_horiz(GLfloat y, GLfloat *p) |
| 180 | { |
| 181 | GLfloat x; |
| 182 | |
| 183 | /* if y does not lie between y1 and y2, no |
| 184 | * intersection possible |
| 185 | */ |
| 186 | if (sign(y-y1) == sign(y-y2)) |
| 187 | return 0; |
| 188 | |
| 189 | x = (y - c) / m; |
| 190 | |
| 191 | /* if x does not lie between cx1 and cx2, no |
| 192 | * intersection: |
| 193 | */ |
| 194 | if (sign(x-cx1) == sign(x-cx2)) |
| 195 | return 0; |
| 196 | |
| 197 | *p = x; |
| 198 | return 1; |
| 199 | } |
| 200 | |
| 201 | int intersect_vert(GLfloat x, GLfloat *p) |
| 202 | { |
| 203 | GLfloat y; |
| 204 | |
| 205 | if (sign(x-x1) == sign(x-x2)) |
| 206 | return 0; |
| 207 | |
| 208 | y = m * x + c; |
| 209 | |
| 210 | if (sign(y-cy1) == sign(y-cy2)) |
| 211 | return 0; |
| 212 | |
| 213 | *p = y; |
| 214 | return 1; |
| 215 | } |
| 216 | |
| 217 | /* y = mx + c */ |
| 218 | m = (y2 - y1) / (x2 - x1); |
| 219 | c = y1 - m * x1; |
| 220 | |
| 221 | /* check for up to two intersections with the four edges |
| 222 | * of the clip rect. Note that we don't know the orientation |
| 223 | * of the transformed surface wrt. the clip rect. So if when |
| 224 | * there are two intersection points, we need to put the one |
| 225 | * closest to x1,y1 first: |
| 226 | */ |
| 227 | |
| 228 | /* check top clip rect edge: */ |
| 229 | if (intersect_horiz(cy1, &p)) { |
| 230 | ty[tn] = cy1; |
| 231 | tx[tn] = p; |
| 232 | tn++; |
| 233 | } |
| 234 | |
| 235 | /* check right clip rect edge: */ |
| 236 | if (intersect_vert(cx2, &p)) { |
| 237 | ty[tn] = p; |
| 238 | tx[tn] = cx2; |
| 239 | tn++; |
| 240 | if (tn == 2) |
| 241 | goto edge_check_done; |
| 242 | } |
| 243 | |
| 244 | /* check bottom clip rect edge: */ |
| 245 | if (intersect_horiz(cy2, &p)) { |
| 246 | ty[tn] = cy2; |
| 247 | tx[tn] = p; |
| 248 | tn++; |
| 249 | if (tn == 2) |
| 250 | goto edge_check_done; |
| 251 | } |
| 252 | |
| 253 | /* check left clip rect edge: */ |
| 254 | if (intersect_vert(cx1, &p)) { |
| 255 | ty[tn] = p; |
| 256 | tx[tn] = cx1; |
| 257 | tn++; |
| 258 | } |
| 259 | |
| 260 | edge_check_done: |
| 261 | if (tn == 1) { |
| 262 | append_vertex(tx[0], ty[0]); |
| 263 | } else if (tn == 2) { |
| 264 | if (dist_squared(x1, y1, tx[0], ty[0]) < |
| 265 | dist_squared(x1, y1, tx[1], ty[1])) { |
| 266 | append_vertex(tx[0], ty[0]); |
| 267 | append_vertex(tx[1], ty[1]); |
| 268 | } else { |
| 269 | append_vertex(tx[1], ty[1]); |
| 270 | append_vertex(tx[0], ty[0]); |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | if (n == last_n) { |
| 275 | GLfloat best_x=0, best_y=0; |
| 276 | uint32_t d, best_d = (unsigned int)-1; /* distance squared */ |
| 277 | uint32_t max_d = dist_squared(x2, y2, |
| 278 | x[(i+2) % 4], y[(i+2) % 4]); |
| 279 | |
| 280 | /* if there are no vertices on this line, it could be that |
| 281 | * there is a vertex of the clip rect that is enclosed by |
| 282 | * the transformed surface. Find the vertex of the clip |
| 283 | * rect that is reached by the shortest line perpendicular |
| 284 | * to the current edge, if any. |
| 285 | * |
| 286 | * slope of perpendicular is 1/m, so |
| 287 | * |
| 288 | * cy = -cx/m + c2 |
| 289 | * c2 = cy + cx/m |
| 290 | * |
| 291 | */ |
| 292 | |
| 293 | int perp_intersect(GLfloat cx, GLfloat cy, uint32_t *d) |
| 294 | { |
| 295 | GLfloat c2 = cy + cx/m; |
| 296 | GLfloat x = (c2 - c) / (m + 1/m); |
| 297 | |
| 298 | /* if the x position of the intersection of the |
| 299 | * perpendicular with the transformed edge does |
| 300 | * not lie within the bounds of the edge, then |
| 301 | * no intersection: |
| 302 | */ |
| 303 | if (sign(x-x1) == sign(x-x2)) |
| 304 | return 0; |
| 305 | |
| 306 | *d = dist_squared(cx, cy, x, (m * x) + c); |
| 307 | |
| 308 | /* if intersection distance is further away than |
| 309 | * opposite edge of surface region, it is invalid: |
| 310 | */ |
| 311 | if (*d > max_d) |
| 312 | return 0; |
| 313 | |
| 314 | return 1; |
| 315 | } |
| 316 | |
| 317 | if (perp_intersect(cx1, cy1, &d)) { |
| 318 | best_x = cx1; |
| 319 | best_y = cy1; |
| 320 | best_d = d; |
| 321 | } |
| 322 | |
| 323 | if (perp_intersect(cx1, cy2, &d) && (d < best_d)) { |
| 324 | best_x = cx1; |
| 325 | best_y = cy2; |
| 326 | best_d = d; |
| 327 | } |
| 328 | |
| 329 | if (perp_intersect(cx2, cy2, &d) && (d < best_d)) { |
| 330 | best_x = cx2; |
| 331 | best_y = cy2; |
| 332 | best_d = d; |
| 333 | } |
| 334 | |
| 335 | if (perp_intersect(cx2, cy1, &d) && (d < best_d)) { |
| 336 | best_x = cx2; |
| 337 | best_y = cy1; |
| 338 | best_d = d; |
| 339 | } |
| 340 | |
| 341 | if (best_d != (unsigned int)-1) // XXX can this happen? |
| 342 | append_vertex(best_x, best_y); |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | } |
| 347 | |
| 348 | return n; |
| 349 | } |
| 350 | |
| 351 | static int |
| 352 | texture_region(struct weston_surface *es, pixman_region32_t *region, |
| 353 | pixman_region32_t *surf_region) |
| 354 | { |
| 355 | struct weston_compositor *ec = es->compositor; |
| 356 | GLfloat *v, inv_width, inv_height; |
| 357 | unsigned int *vtxcnt, nvtx = 0; |
| 358 | pixman_box32_t *rects, *surf_rects; |
| 359 | int i, j, k, nrects, nsurf; |
| 360 | |
| 361 | rects = pixman_region32_rectangles(region, &nrects); |
| 362 | surf_rects = pixman_region32_rectangles(surf_region, &nsurf); |
| 363 | |
| 364 | /* worst case we can have 8 vertices per rect (ie. clipped into |
| 365 | * an octagon): |
| 366 | */ |
| 367 | v = wl_array_add(&ec->vertices, nrects * nsurf * 8 * 4 * sizeof *v); |
| 368 | vtxcnt = wl_array_add(&ec->vtxcnt, nrects * nsurf * sizeof *vtxcnt); |
| 369 | |
| 370 | inv_width = 1.0 / es->pitch; |
| 371 | inv_height = 1.0 / es->geometry.height; |
| 372 | |
| 373 | for (i = 0; i < nrects; i++) { |
| 374 | pixman_box32_t *rect = &rects[i]; |
| 375 | for (j = 0; j < nsurf; j++) { |
| 376 | pixman_box32_t *surf_rect = &surf_rects[j]; |
| 377 | GLfloat sx, sy; |
| 378 | GLfloat ex[8], ey[8]; /* edge points in screen space */ |
| 379 | int n; |
| 380 | |
| 381 | /* The transformed surface, after clipping to the clip region, |
| 382 | * can have as many as eight sides, emitted as a triangle-fan. |
| 383 | * The first vertex in the triangle fan can be chosen arbitrarily, |
| 384 | * since the area is guaranteed to be convex. |
| 385 | * |
| 386 | * If a corner of the transformed surface falls outside of the |
| 387 | * clip region, instead of emitting one vertex for the corner |
| 388 | * of the surface, up to two are emitted for two corresponding |
| 389 | * intersection point(s) between the surface and the clip region. |
| 390 | * |
| 391 | * To do this, we first calculate the (up to eight) points that |
| 392 | * form the intersection of the clip rect and the transformed |
| 393 | * surface. |
| 394 | */ |
| 395 | n = calculate_edges(es, rect, surf_rect, ex, ey); |
| 396 | if (n < 3) |
| 397 | continue; |
| 398 | |
| 399 | /* emit edge points: */ |
| 400 | for (k = 0; k < n; k++) { |
| 401 | weston_surface_from_global_float(es, ex[k], ey[k], &sx, &sy); |
| 402 | /* position: */ |
| 403 | *(v++) = ex[k]; |
| 404 | *(v++) = ey[k]; |
| 405 | /* texcoord: */ |
| 406 | *(v++) = sx * inv_width; |
| 407 | *(v++) = sy * inv_height; |
| 408 | } |
| 409 | |
| 410 | vtxcnt[nvtx++] = n; |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | return nvtx; |
| 415 | } |
| 416 | |
| 417 | static void |
| 418 | triangle_fan_debug(struct weston_surface *surface, int first, int count) |
| 419 | { |
| 420 | struct weston_compositor *compositor = surface->compositor; |
| 421 | int i; |
| 422 | GLushort *buffer; |
| 423 | GLushort *index; |
| 424 | int nelems; |
| 425 | static int color_idx = 0; |
| 426 | static const GLfloat color[][4] = { |
| 427 | { 1.0, 0.0, 0.0, 1.0 }, |
| 428 | { 0.0, 1.0, 0.0, 1.0 }, |
| 429 | { 0.0, 0.0, 1.0, 1.0 }, |
| 430 | { 1.0, 1.0, 1.0, 1.0 }, |
| 431 | }; |
| 432 | |
| 433 | nelems = (count - 1 + count - 2) * 2; |
| 434 | |
| 435 | buffer = malloc(sizeof(GLushort) * nelems); |
| 436 | index = buffer; |
| 437 | |
| 438 | for (i = 1; i < count; i++) { |
| 439 | *index++ = first; |
| 440 | *index++ = first + i; |
| 441 | } |
| 442 | |
| 443 | for (i = 2; i < count; i++) { |
| 444 | *index++ = first + i - 1; |
| 445 | *index++ = first + i; |
| 446 | } |
| 447 | |
| 448 | glUseProgram(compositor->solid_shader.program); |
| 449 | glUniform4fv(compositor->solid_shader.color_uniform, 1, |
| 450 | color[color_idx++ % ARRAY_LENGTH(color)]); |
| 451 | glDrawElements(GL_LINES, nelems, GL_UNSIGNED_SHORT, buffer); |
| 452 | glUseProgram(compositor->current_shader->program); |
| 453 | free(buffer); |
| 454 | } |
| 455 | |
| 456 | static void |
| 457 | repaint_region(struct weston_surface *es, pixman_region32_t *region, |
| 458 | pixman_region32_t *surf_region) |
| 459 | { |
| 460 | struct weston_compositor *ec = es->compositor; |
| 461 | GLfloat *v; |
| 462 | unsigned int *vtxcnt; |
| 463 | int i, first, nfans; |
| 464 | |
| 465 | /* The final region to be painted is the intersection of |
| 466 | * 'region' and 'surf_region'. However, 'region' is in the global |
| 467 | * coordinates, and 'surf_region' is in the surface-local |
| 468 | * coordinates. texture_region() will iterate over all pairs of |
| 469 | * rectangles from both regions, compute the intersection |
| 470 | * polygon for each pair, and store it as a triangle fan if |
| 471 | * it has a non-zero area (at least 3 vertices, actually). |
| 472 | */ |
| 473 | nfans = texture_region(es, region, surf_region); |
| 474 | |
| 475 | v = ec->vertices.data; |
| 476 | vtxcnt = ec->vtxcnt.data; |
| 477 | |
| 478 | /* position: */ |
| 479 | glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 4 * sizeof *v, &v[0]); |
| 480 | glEnableVertexAttribArray(0); |
| 481 | |
| 482 | /* texcoord: */ |
| 483 | glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 4 * sizeof *v, &v[2]); |
| 484 | glEnableVertexAttribArray(1); |
| 485 | |
| 486 | for (i = 0, first = 0; i < nfans; i++) { |
| 487 | glDrawArrays(GL_TRIANGLE_FAN, first, vtxcnt[i]); |
| 488 | if (ec->fan_debug) |
| 489 | triangle_fan_debug(es, first, vtxcnt[i]); |
| 490 | first += vtxcnt[i]; |
| 491 | } |
| 492 | |
| 493 | glDisableVertexAttribArray(1); |
| 494 | glDisableVertexAttribArray(0); |
| 495 | |
| 496 | ec->vertices.size = 0; |
| 497 | ec->vtxcnt.size = 0; |
| 498 | } |
| 499 | |
| 500 | static void |
| 501 | weston_compositor_use_shader(struct weston_compositor *compositor, |
| 502 | struct weston_shader *shader) |
| 503 | { |
| 504 | if (compositor->current_shader == shader) |
| 505 | return; |
| 506 | |
| 507 | glUseProgram(shader->program); |
| 508 | compositor->current_shader = shader; |
| 509 | } |
| 510 | |
| 511 | static void |
| 512 | weston_shader_uniforms(struct weston_shader *shader, |
| 513 | struct weston_surface *surface, |
| 514 | struct weston_output *output) |
| 515 | { |
| 516 | int i; |
| 517 | |
| 518 | glUniformMatrix4fv(shader->proj_uniform, |
| 519 | 1, GL_FALSE, output->matrix.d); |
| 520 | glUniform4fv(shader->color_uniform, 1, surface->color); |
| 521 | glUniform1f(shader->alpha_uniform, surface->alpha); |
| 522 | |
| 523 | for (i = 0; i < surface->num_textures; i++) |
| 524 | glUniform1i(shader->tex_uniforms[i], i); |
| 525 | } |
| 526 | |
| 527 | static void |
| 528 | draw_surface(struct weston_surface *es, struct weston_output *output, |
| 529 | pixman_region32_t *damage) /* in global coordinates */ |
| 530 | { |
| 531 | struct weston_compositor *ec = es->compositor; |
| 532 | /* repaint bounding region in global coordinates: */ |
| 533 | pixman_region32_t repaint; |
| 534 | /* non-opaque region in surface coordinates: */ |
| 535 | pixman_region32_t surface_blend; |
| 536 | GLint filter; |
| 537 | int i; |
| 538 | |
| 539 | pixman_region32_init(&repaint); |
| 540 | pixman_region32_intersect(&repaint, |
| 541 | &es->transform.boundingbox, damage); |
| 542 | pixman_region32_subtract(&repaint, &repaint, &es->clip); |
| 543 | |
| 544 | if (!pixman_region32_not_empty(&repaint)) |
| 545 | goto out; |
| 546 | |
| 547 | pixman_region32_subtract(&ec->primary_plane.damage, |
| 548 | &ec->primary_plane.damage, &repaint); |
| 549 | |
| 550 | glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); |
| 551 | |
| 552 | if (ec->fan_debug) { |
| 553 | weston_compositor_use_shader(ec, &ec->solid_shader); |
| 554 | weston_shader_uniforms(&ec->solid_shader, es, output); |
| 555 | } |
| 556 | |
| 557 | weston_compositor_use_shader(ec, es->shader); |
| 558 | weston_shader_uniforms(es->shader, es, output); |
| 559 | |
| 560 | if (es->transform.enabled || output->zoom.active) |
| 561 | filter = GL_LINEAR; |
| 562 | else |
| 563 | filter = GL_NEAREST; |
| 564 | |
| 565 | for (i = 0; i < es->num_textures; i++) { |
| 566 | glActiveTexture(GL_TEXTURE0 + i); |
| 567 | glBindTexture(es->target, es->textures[i]); |
| 568 | glTexParameteri(es->target, GL_TEXTURE_MIN_FILTER, filter); |
| 569 | glTexParameteri(es->target, GL_TEXTURE_MAG_FILTER, filter); |
| 570 | } |
| 571 | |
| 572 | /* blended region is whole surface minus opaque region: */ |
| 573 | pixman_region32_init_rect(&surface_blend, 0, 0, |
| 574 | es->geometry.width, es->geometry.height); |
| 575 | pixman_region32_subtract(&surface_blend, &surface_blend, &es->opaque); |
| 576 | |
| 577 | if (pixman_region32_not_empty(&es->opaque)) { |
| 578 | if (es->shader == &ec->texture_shader_rgba) { |
| 579 | /* Special case for RGBA textures with possibly |
| 580 | * bad data in alpha channel: use the shader |
| 581 | * that forces texture alpha = 1.0. |
| 582 | * Xwayland surfaces need this. |
| 583 | */ |
| 584 | weston_compositor_use_shader(ec, &ec->texture_shader_rgbx); |
| 585 | weston_shader_uniforms(&ec->texture_shader_rgbx, es, output); |
| 586 | } |
| 587 | |
| 588 | if (es->alpha < 1.0) |
| 589 | glEnable(GL_BLEND); |
| 590 | else |
| 591 | glDisable(GL_BLEND); |
| 592 | |
| 593 | repaint_region(es, &repaint, &es->opaque); |
| 594 | } |
| 595 | |
| 596 | if (pixman_region32_not_empty(&surface_blend)) { |
| 597 | weston_compositor_use_shader(ec, es->shader); |
| 598 | glEnable(GL_BLEND); |
| 599 | repaint_region(es, &repaint, &surface_blend); |
| 600 | } |
| 601 | |
| 602 | pixman_region32_fini(&surface_blend); |
| 603 | |
| 604 | out: |
| 605 | pixman_region32_fini(&repaint); |
| 606 | } |
| 607 | |
Kristian Høgsberg | d7c1726 | 2012-09-05 21:54:15 -0400 | [diff] [blame] | 608 | static void |
| 609 | repaint_surfaces(struct weston_output *output, pixman_region32_t *damage) |
| 610 | { |
| 611 | struct weston_compositor *compositor = output->compositor; |
| 612 | struct weston_surface *surface; |
| 613 | |
| 614 | wl_list_for_each_reverse(surface, &compositor->surface_list, link) |
| 615 | if (surface->plane == &compositor->primary_plane) |
Kristian Høgsberg | ecf6ede | 2012-09-05 21:59:35 -0400 | [diff] [blame^] | 616 | draw_surface(surface, output, damage); |
Kristian Høgsberg | d7c1726 | 2012-09-05 21:54:15 -0400 | [diff] [blame] | 617 | } |
| 618 | |
| 619 | WL_EXPORT void |
| 620 | gles2_renderer_repaint_output(struct weston_output *output, |
| 621 | pixman_region32_t *output_damage) |
| 622 | { |
| 623 | struct weston_compositor *compositor = output->compositor; |
| 624 | EGLBoolean ret; |
| 625 | static int errored; |
| 626 | int32_t width, height; |
| 627 | |
| 628 | width = output->current->width + |
| 629 | output->border.left + output->border.right; |
| 630 | height = output->current->height + |
| 631 | output->border.top + output->border.bottom; |
| 632 | |
| 633 | glViewport(0, 0, width, height); |
| 634 | |
| 635 | ret = eglMakeCurrent(compositor->egl_display, output->egl_surface, |
| 636 | output->egl_surface, compositor->egl_context); |
| 637 | if (ret == EGL_FALSE) { |
| 638 | if (errored) |
| 639 | return; |
| 640 | errored = 1; |
| 641 | weston_log("Failed to make EGL context current.\n"); |
| 642 | print_egl_error_state(); |
| 643 | return; |
| 644 | } |
| 645 | |
| 646 | /* if debugging, redraw everything outside the damage to clean up |
| 647 | * debug lines from the previous draw on this buffer: |
| 648 | */ |
| 649 | if (compositor->fan_debug) { |
| 650 | pixman_region32_t undamaged; |
| 651 | pixman_region32_init(&undamaged); |
| 652 | pixman_region32_subtract(&undamaged, &output->region, |
| 653 | output_damage); |
| 654 | compositor->fan_debug = 0; |
| 655 | repaint_surfaces(output, &undamaged); |
| 656 | compositor->fan_debug = 1; |
| 657 | pixman_region32_fini(&undamaged); |
| 658 | } |
| 659 | |
| 660 | repaint_surfaces(output, output_damage); |
| 661 | |
| 662 | wl_signal_emit(&output->frame_signal, output); |
| 663 | |
| 664 | ret = eglSwapBuffers(compositor->egl_display, output->egl_surface); |
| 665 | if (ret == EGL_FALSE && !errored) { |
| 666 | errored = 1; |
| 667 | weston_log("Failed in eglSwapBuffers.\n"); |
| 668 | print_egl_error_state(); |
| 669 | } |
| 670 | |
| 671 | } |