Qiufang Dai | 35c3133 | 2020-05-13 15:29:06 +0800 | [diff] [blame] | 1 | /* |
| 2 | * FreeRTOS Kernel V10.0.1 |
| 3 | * Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| 4 | * |
| 5 | * Permission is hereby granted, free of charge, to any person obtaining a copy of |
| 6 | * this software and associated documentation files (the "Software"), to deal in |
| 7 | * the Software without restriction, including without limitation the rights to |
| 8 | * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of |
| 9 | * the Software, and to permit persons to whom the Software is furnished to do so, |
| 10 | * subject to the following conditions: |
| 11 | * |
| 12 | * The above copyright notice and this permission notice shall be included in all |
| 13 | * copies or substantial portions of the Software. |
| 14 | * |
| 15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS |
| 17 | * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR |
| 18 | * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER |
| 19 | * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 20 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 21 | * |
| 22 | * http://www.FreeRTOS.org |
| 23 | * http://aws.amazon.com/freertos |
| 24 | * |
| 25 | * 1 tab == 4 spaces! |
| 26 | */ |
| 27 | |
| 28 | #include <stdlib.h> |
| 29 | #include <string.h> |
| 30 | |
| 31 | /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining |
| 32 | all the API functions to use the MPU wrappers. That should only be done when |
| 33 | task.h is included from an application file. */ |
| 34 | #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE |
| 35 | |
| 36 | #include "FreeRTOS.h" |
| 37 | #include "task.h" |
| 38 | #include "queue.h" |
| 39 | |
| 40 | #if ( configUSE_CO_ROUTINES == 1 ) |
| 41 | #include "croutine.h" |
| 42 | #endif |
| 43 | |
| 44 | /* Lint e961 and e750 are suppressed as a MISRA exception justified because the |
| 45 | MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the |
| 46 | header files above, but not in this file, in order to generate the correct |
| 47 | privileged Vs unprivileged linkage and placement. */ |
| 48 | #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */ |
| 49 | |
| 50 | |
| 51 | /* Constants used with the cRxLock and cTxLock structure members. */ |
| 52 | #define queueUNLOCKED ( ( int8_t ) -1 ) |
| 53 | #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 ) |
| 54 | |
| 55 | /* When the Queue_t structure is used to represent a base queue its pcHead and |
| 56 | pcTail members are used as pointers into the queue storage area. When the |
| 57 | Queue_t structure is used to represent a mutex pcHead and pcTail pointers are |
| 58 | not necessary, and the pcHead pointer is set to NULL to indicate that the |
| 59 | pcTail pointer actually points to the mutex holder (if any). Map alternative |
| 60 | names to the pcHead and pcTail structure members to ensure the readability of |
| 61 | the code is maintained despite this dual use of two structure members. An |
| 62 | alternative implementation would be to use a union, but use of a union is |
| 63 | against the coding standard (although an exception to the standard has been |
| 64 | permitted where the dual use also significantly changes the type of the |
| 65 | structure member). */ |
| 66 | #define pxMutexHolder pcTail |
| 67 | #define uxQueueType pcHead |
| 68 | #define queueQUEUE_IS_MUTEX NULL |
| 69 | |
| 70 | /* Semaphores do not actually store or copy data, so have an item size of |
| 71 | zero. */ |
| 72 | #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 ) |
| 73 | #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U ) |
| 74 | |
| 75 | #if( configUSE_PREEMPTION == 0 ) |
| 76 | /* If the cooperative scheduler is being used then a yield should not be |
| 77 | performed just because a higher priority task has been woken. */ |
| 78 | #define queueYIELD_IF_USING_PREEMPTION() |
| 79 | #else |
| 80 | #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API() |
| 81 | #endif |
| 82 | |
| 83 | /* |
| 84 | * Definition of the queue used by the scheduler. |
| 85 | * Items are queued by copy, not reference. See the following link for the |
| 86 | * rationale: http://www.freertos.org/Embedded-RTOS-Queues.html |
| 87 | */ |
| 88 | typedef struct QueueDefinition |
| 89 | { |
| 90 | int8_t *pcHead; /*< Points to the beginning of the queue storage area. */ |
| 91 | int8_t *pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */ |
| 92 | int8_t *pcWriteTo; /*< Points to the free next place in the storage area. */ |
| 93 | |
| 94 | union /* Use of a union is an exception to the coding standard to ensure two mutually exclusive structure members don't appear simultaneously (wasting RAM). */ |
| 95 | { |
| 96 | int8_t *pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */ |
| 97 | UBaseType_t uxRecursiveCallCount;/*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */ |
| 98 | } u; |
| 99 | |
| 100 | List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */ |
| 101 | List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */ |
| 102 | |
| 103 | volatile UBaseType_t uxMessagesWaiting;/*< The number of items currently in the queue. */ |
| 104 | UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */ |
| 105 | UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */ |
| 106 | |
| 107 | volatile int8_t cRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */ |
| 108 | volatile int8_t cTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */ |
| 109 | |
| 110 | #if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) |
| 111 | uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */ |
| 112 | #endif |
| 113 | |
| 114 | #if ( configUSE_QUEUE_SETS == 1 ) |
| 115 | struct QueueDefinition *pxQueueSetContainer; |
| 116 | #endif |
| 117 | |
| 118 | #if ( configUSE_TRACE_FACILITY == 1 ) |
| 119 | UBaseType_t uxQueueNumber; |
| 120 | uint8_t ucQueueType; |
| 121 | #endif |
| 122 | |
| 123 | } xQUEUE; |
| 124 | |
| 125 | /* The old xQUEUE name is maintained above then typedefed to the new Queue_t |
| 126 | name below to enable the use of older kernel aware debuggers. */ |
| 127 | typedef xQUEUE Queue_t; |
| 128 | |
| 129 | /*-----------------------------------------------------------*/ |
| 130 | |
| 131 | /* |
| 132 | * The queue registry is just a means for kernel aware debuggers to locate |
| 133 | * queue structures. It has no other purpose so is an optional component. |
| 134 | */ |
| 135 | #if ( configQUEUE_REGISTRY_SIZE > 0 ) |
| 136 | |
| 137 | /* The type stored within the queue registry array. This allows a name |
| 138 | to be assigned to each queue making kernel aware debugging a little |
| 139 | more user friendly. */ |
| 140 | typedef struct QUEUE_REGISTRY_ITEM |
| 141 | { |
| 142 | const char *pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| 143 | QueueHandle_t xHandle; |
| 144 | } xQueueRegistryItem; |
| 145 | |
| 146 | /* The old xQueueRegistryItem name is maintained above then typedefed to the |
| 147 | new xQueueRegistryItem name below to enable the use of older kernel aware |
| 148 | debuggers. */ |
| 149 | typedef xQueueRegistryItem QueueRegistryItem_t; |
| 150 | |
| 151 | /* The queue registry is simply an array of QueueRegistryItem_t structures. |
| 152 | The pcQueueName member of a structure being NULL is indicative of the |
| 153 | array position being vacant. */ |
| 154 | PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ]; |
| 155 | |
| 156 | #endif /* configQUEUE_REGISTRY_SIZE */ |
| 157 | |
| 158 | /* |
| 159 | * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not |
| 160 | * prevent an ISR from adding or removing items to the queue, but does prevent |
| 161 | * an ISR from removing tasks from the queue event lists. If an ISR finds a |
| 162 | * queue is locked it will instead increment the appropriate queue lock count |
| 163 | * to indicate that a task may require unblocking. When the queue in unlocked |
| 164 | * these lock counts are inspected, and the appropriate action taken. |
| 165 | */ |
| 166 | static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION; |
| 167 | |
| 168 | /* |
| 169 | * Uses a critical section to determine if there is any data in a queue. |
| 170 | * |
| 171 | * @return pdTRUE if the queue contains no items, otherwise pdFALSE. |
| 172 | */ |
| 173 | static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue ) PRIVILEGED_FUNCTION; |
| 174 | |
| 175 | /* |
| 176 | * Uses a critical section to determine if there is any space in a queue. |
| 177 | * |
| 178 | * @return pdTRUE if there is no space, otherwise pdFALSE; |
| 179 | */ |
| 180 | static BaseType_t prvIsQueueFull( const Queue_t *pxQueue ) PRIVILEGED_FUNCTION; |
| 181 | |
| 182 | /* |
| 183 | * Copies an item into the queue, either at the front of the queue or the |
| 184 | * back of the queue. |
| 185 | */ |
| 186 | static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition ) PRIVILEGED_FUNCTION; |
| 187 | |
| 188 | /* |
| 189 | * Copies an item out of a queue. |
| 190 | */ |
| 191 | static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer ) PRIVILEGED_FUNCTION; |
| 192 | |
| 193 | #if ( configUSE_QUEUE_SETS == 1 ) |
| 194 | /* |
| 195 | * Checks to see if a queue is a member of a queue set, and if so, notifies |
| 196 | * the queue set that the queue contains data. |
| 197 | */ |
| 198 | static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION; |
| 199 | #endif |
| 200 | |
| 201 | /* |
| 202 | * Called after a Queue_t structure has been allocated either statically or |
| 203 | * dynamically to fill in the structure's members. |
| 204 | */ |
| 205 | static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, const uint8_t ucQueueType, Queue_t *pxNewQueue ) PRIVILEGED_FUNCTION; |
| 206 | |
| 207 | /* |
| 208 | * Mutexes are a special type of queue. When a mutex is created, first the |
| 209 | * queue is created, then prvInitialiseMutex() is called to configure the queue |
| 210 | * as a mutex. |
| 211 | */ |
| 212 | #if( configUSE_MUTEXES == 1 ) |
| 213 | static void prvInitialiseMutex( Queue_t *pxNewQueue ) PRIVILEGED_FUNCTION; |
| 214 | #endif |
| 215 | |
| 216 | #if( configUSE_MUTEXES == 1 ) |
| 217 | /* |
| 218 | * If a task waiting for a mutex causes the mutex holder to inherit a |
| 219 | * priority, but the waiting task times out, then the holder should |
| 220 | * disinherit the priority - but only down to the highest priority of any |
| 221 | * other tasks that are waiting for the same mutex. This function returns |
| 222 | * that priority. |
| 223 | */ |
| 224 | static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION; |
| 225 | #endif |
| 226 | /*-----------------------------------------------------------*/ |
| 227 | |
| 228 | /* |
| 229 | * Macro to mark a queue as locked. Locking a queue prevents an ISR from |
| 230 | * accessing the queue event lists. |
| 231 | */ |
| 232 | #define prvLockQueue( pxQueue ) \ |
| 233 | taskENTER_CRITICAL(); \ |
| 234 | { \ |
| 235 | if( ( pxQueue )->cRxLock == queueUNLOCKED ) \ |
| 236 | { \ |
| 237 | ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \ |
| 238 | } \ |
| 239 | if( ( pxQueue )->cTxLock == queueUNLOCKED ) \ |
| 240 | { \ |
| 241 | ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \ |
| 242 | } \ |
| 243 | } \ |
| 244 | taskEXIT_CRITICAL() |
| 245 | /*-----------------------------------------------------------*/ |
| 246 | |
| 247 | BaseType_t xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue ) |
| 248 | { |
| 249 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 250 | |
| 251 | configASSERT( pxQueue ); |
| 252 | |
| 253 | taskENTER_CRITICAL(); |
| 254 | { |
| 255 | pxQueue->pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize ); |
| 256 | pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U; |
| 257 | pxQueue->pcWriteTo = pxQueue->pcHead; |
| 258 | pxQueue->u.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - ( UBaseType_t ) 1U ) * pxQueue->uxItemSize ); |
| 259 | pxQueue->cRxLock = queueUNLOCKED; |
| 260 | pxQueue->cTxLock = queueUNLOCKED; |
| 261 | |
| 262 | if( xNewQueue == pdFALSE ) |
| 263 | { |
| 264 | /* If there are tasks blocked waiting to read from the queue, then |
| 265 | the tasks will remain blocked as after this function exits the queue |
| 266 | will still be empty. If there are tasks blocked waiting to write to |
| 267 | the queue, then one should be unblocked as after this function exits |
| 268 | it will be possible to write to it. */ |
| 269 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| 270 | { |
| 271 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| 272 | { |
| 273 | queueYIELD_IF_USING_PREEMPTION(); |
| 274 | } |
| 275 | else |
| 276 | { |
| 277 | mtCOVERAGE_TEST_MARKER(); |
| 278 | } |
| 279 | } |
| 280 | else |
| 281 | { |
| 282 | mtCOVERAGE_TEST_MARKER(); |
| 283 | } |
| 284 | } |
| 285 | else |
| 286 | { |
| 287 | /* Ensure the event queues start in the correct state. */ |
| 288 | vListInitialise( &( pxQueue->xTasksWaitingToSend ) ); |
| 289 | vListInitialise( &( pxQueue->xTasksWaitingToReceive ) ); |
| 290 | } |
| 291 | } |
| 292 | taskEXIT_CRITICAL(); |
| 293 | |
| 294 | /* A value is returned for calling semantic consistency with previous |
| 295 | versions. */ |
| 296 | return pdPASS; |
| 297 | } |
| 298 | /*-----------------------------------------------------------*/ |
| 299 | |
| 300 | #if( configSUPPORT_STATIC_ALLOCATION == 1 ) |
| 301 | |
| 302 | QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, StaticQueue_t *pxStaticQueue, const uint8_t ucQueueType ) |
| 303 | { |
| 304 | Queue_t *pxNewQueue; |
| 305 | |
| 306 | configASSERT( uxQueueLength > ( UBaseType_t ) 0 ); |
| 307 | |
| 308 | /* The StaticQueue_t structure and the queue storage area must be |
| 309 | supplied. */ |
| 310 | configASSERT( pxStaticQueue != NULL ); |
| 311 | |
| 312 | /* A queue storage area should be provided if the item size is not 0, and |
| 313 | should not be provided if the item size is 0. */ |
| 314 | configASSERT( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0 ) ) ); |
| 315 | configASSERT( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0 ) ) ); |
| 316 | |
| 317 | #if( configASSERT_DEFINED == 1 ) |
| 318 | { |
| 319 | /* Sanity check that the size of the structure used to declare a |
| 320 | variable of type StaticQueue_t or StaticSemaphore_t equals the size of |
| 321 | the real queue and semaphore structures. */ |
| 322 | volatile size_t xSize = sizeof( StaticQueue_t ); |
| 323 | configASSERT( xSize == sizeof( Queue_t ) ); |
| 324 | } |
| 325 | #endif /* configASSERT_DEFINED */ |
| 326 | |
| 327 | /* The address of a statically allocated queue was passed in, use it. |
| 328 | The address of a statically allocated storage area was also passed in |
| 329 | but is already set. */ |
| 330 | pxNewQueue = ( Queue_t * ) pxStaticQueue; /*lint !e740 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */ |
| 331 | |
| 332 | if( pxNewQueue != NULL ) |
| 333 | { |
| 334 | #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) |
| 335 | { |
| 336 | /* Queues can be allocated wither statically or dynamically, so |
| 337 | note this queue was allocated statically in case the queue is |
| 338 | later deleted. */ |
| 339 | pxNewQueue->ucStaticallyAllocated = pdTRUE; |
| 340 | } |
| 341 | #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ |
| 342 | |
| 343 | prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue ); |
| 344 | } |
| 345 | else |
| 346 | { |
| 347 | traceQUEUE_CREATE_FAILED( ucQueueType ); |
| 348 | } |
| 349 | |
| 350 | return pxNewQueue; |
| 351 | } |
| 352 | |
| 353 | #endif /* configSUPPORT_STATIC_ALLOCATION */ |
| 354 | /*-----------------------------------------------------------*/ |
| 355 | |
| 356 | #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) |
| 357 | |
| 358 | QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType ) |
| 359 | { |
| 360 | Queue_t *pxNewQueue; |
| 361 | size_t xQueueSizeInBytes; |
| 362 | uint8_t *pucQueueStorage; |
| 363 | |
| 364 | configASSERT( uxQueueLength > ( UBaseType_t ) 0 ); |
| 365 | |
| 366 | if( uxItemSize == ( UBaseType_t ) 0 ) |
| 367 | { |
| 368 | /* There is not going to be a queue storage area. */ |
| 369 | xQueueSizeInBytes = ( size_t ) 0; |
| 370 | } |
| 371 | else |
| 372 | { |
| 373 | /* Allocate enough space to hold the maximum number of items that |
| 374 | can be in the queue at any time. */ |
| 375 | xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
| 376 | } |
| 377 | |
| 378 | pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes ); |
| 379 | |
| 380 | if( pxNewQueue != NULL ) |
| 381 | { |
| 382 | /* Jump past the queue structure to find the location of the queue |
| 383 | storage area. */ |
| 384 | pucQueueStorage = ( ( uint8_t * ) pxNewQueue ) + sizeof( Queue_t ); |
| 385 | |
| 386 | #if( configSUPPORT_STATIC_ALLOCATION == 1 ) |
| 387 | { |
| 388 | /* Queues can be created either statically or dynamically, so |
| 389 | note this task was created dynamically in case it is later |
| 390 | deleted. */ |
| 391 | pxNewQueue->ucStaticallyAllocated = pdFALSE; |
| 392 | } |
| 393 | #endif /* configSUPPORT_STATIC_ALLOCATION */ |
| 394 | |
| 395 | prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue ); |
| 396 | } |
| 397 | else |
| 398 | { |
| 399 | traceQUEUE_CREATE_FAILED( ucQueueType ); |
| 400 | } |
| 401 | |
| 402 | return pxNewQueue; |
| 403 | } |
| 404 | |
| 405 | #endif /* configSUPPORT_STATIC_ALLOCATION */ |
| 406 | /*-----------------------------------------------------------*/ |
| 407 | |
| 408 | static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, const uint8_t ucQueueType, Queue_t *pxNewQueue ) |
| 409 | { |
| 410 | /* Remove compiler warnings about unused parameters should |
| 411 | configUSE_TRACE_FACILITY not be set to 1. */ |
| 412 | ( void ) ucQueueType; |
| 413 | |
| 414 | if( uxItemSize == ( UBaseType_t ) 0 ) |
| 415 | { |
| 416 | /* No RAM was allocated for the queue storage area, but PC head cannot |
| 417 | be set to NULL because NULL is used as a key to say the queue is used as |
| 418 | a mutex. Therefore just set pcHead to point to the queue as a benign |
| 419 | value that is known to be within the memory map. */ |
| 420 | pxNewQueue->pcHead = ( int8_t * ) pxNewQueue; |
| 421 | } |
| 422 | else |
| 423 | { |
| 424 | /* Set the head to the start of the queue storage area. */ |
| 425 | pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage; |
| 426 | } |
| 427 | |
| 428 | /* Initialise the queue members as described where the queue type is |
| 429 | defined. */ |
| 430 | pxNewQueue->uxLength = uxQueueLength; |
| 431 | pxNewQueue->uxItemSize = uxItemSize; |
| 432 | ( void ) xQueueGenericReset( pxNewQueue, pdTRUE ); |
| 433 | |
| 434 | #if ( configUSE_TRACE_FACILITY == 1 ) |
| 435 | { |
| 436 | pxNewQueue->ucQueueType = ucQueueType; |
| 437 | } |
| 438 | #endif /* configUSE_TRACE_FACILITY */ |
| 439 | |
| 440 | #if( configUSE_QUEUE_SETS == 1 ) |
| 441 | { |
| 442 | pxNewQueue->pxQueueSetContainer = NULL; |
| 443 | } |
| 444 | #endif /* configUSE_QUEUE_SETS */ |
| 445 | |
| 446 | traceQUEUE_CREATE( pxNewQueue ); |
| 447 | } |
| 448 | /*-----------------------------------------------------------*/ |
| 449 | |
| 450 | #if( configUSE_MUTEXES == 1 ) |
| 451 | |
| 452 | static void prvInitialiseMutex( Queue_t *pxNewQueue ) |
| 453 | { |
| 454 | if( pxNewQueue != NULL ) |
| 455 | { |
| 456 | /* The queue create function will set all the queue structure members |
| 457 | correctly for a generic queue, but this function is creating a |
| 458 | mutex. Overwrite those members that need to be set differently - |
| 459 | in particular the information required for priority inheritance. */ |
| 460 | pxNewQueue->pxMutexHolder = NULL; |
| 461 | pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX; |
| 462 | |
| 463 | /* In case this is a recursive mutex. */ |
| 464 | pxNewQueue->u.uxRecursiveCallCount = 0; |
| 465 | |
| 466 | traceCREATE_MUTEX( pxNewQueue ); |
| 467 | |
| 468 | /* Start with the semaphore in the expected state. */ |
| 469 | ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK ); |
| 470 | } |
| 471 | else |
| 472 | { |
| 473 | traceCREATE_MUTEX_FAILED(); |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | #endif /* configUSE_MUTEXES */ |
| 478 | /*-----------------------------------------------------------*/ |
| 479 | |
| 480 | #if( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) |
| 481 | |
| 482 | QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType ) |
| 483 | { |
| 484 | Queue_t *pxNewQueue; |
| 485 | const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0; |
| 486 | |
| 487 | pxNewQueue = ( Queue_t * ) xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType ); |
| 488 | prvInitialiseMutex( pxNewQueue ); |
| 489 | |
| 490 | return pxNewQueue; |
| 491 | } |
| 492 | |
| 493 | #endif /* configUSE_MUTEXES */ |
| 494 | /*-----------------------------------------------------------*/ |
| 495 | |
| 496 | #if( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) |
| 497 | |
| 498 | QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType, StaticQueue_t *pxStaticQueue ) |
| 499 | { |
| 500 | Queue_t *pxNewQueue; |
| 501 | const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0; |
| 502 | |
| 503 | /* Prevent compiler warnings about unused parameters if |
| 504 | configUSE_TRACE_FACILITY does not equal 1. */ |
| 505 | ( void ) ucQueueType; |
| 506 | |
| 507 | pxNewQueue = ( Queue_t * ) xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType ); |
| 508 | prvInitialiseMutex( pxNewQueue ); |
| 509 | |
| 510 | return pxNewQueue; |
| 511 | } |
| 512 | |
| 513 | #endif /* configUSE_MUTEXES */ |
| 514 | /*-----------------------------------------------------------*/ |
| 515 | |
| 516 | #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) |
| 517 | |
| 518 | void* xQueueGetMutexHolder( QueueHandle_t xSemaphore ) |
| 519 | { |
| 520 | void *pxReturn; |
| 521 | |
| 522 | /* This function is called by xSemaphoreGetMutexHolder(), and should not |
| 523 | be called directly. Note: This is a good way of determining if the |
| 524 | calling task is the mutex holder, but not a good way of determining the |
| 525 | identity of the mutex holder, as the holder may change between the |
| 526 | following critical section exiting and the function returning. */ |
| 527 | taskENTER_CRITICAL(); |
| 528 | { |
| 529 | if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX ) |
| 530 | { |
| 531 | pxReturn = ( void * ) ( ( Queue_t * ) xSemaphore )->pxMutexHolder; |
| 532 | } |
| 533 | else |
| 534 | { |
| 535 | pxReturn = NULL; |
| 536 | } |
| 537 | } |
| 538 | taskEXIT_CRITICAL(); |
| 539 | |
| 540 | return pxReturn; |
| 541 | } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */ |
| 542 | |
| 543 | #endif |
| 544 | /*-----------------------------------------------------------*/ |
| 545 | |
| 546 | #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) |
| 547 | |
| 548 | void* xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore ) |
| 549 | { |
| 550 | void *pxReturn; |
| 551 | |
| 552 | configASSERT( xSemaphore ); |
| 553 | |
| 554 | /* Mutexes cannot be used in interrupt service routines, so the mutex |
| 555 | holder should not change in an ISR, and therefore a critical section is |
| 556 | not required here. */ |
| 557 | if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX ) |
| 558 | { |
| 559 | pxReturn = ( void * ) ( ( Queue_t * ) xSemaphore )->pxMutexHolder; |
| 560 | } |
| 561 | else |
| 562 | { |
| 563 | pxReturn = NULL; |
| 564 | } |
| 565 | |
| 566 | return pxReturn; |
| 567 | } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */ |
| 568 | |
| 569 | #endif |
| 570 | /*-----------------------------------------------------------*/ |
| 571 | |
| 572 | #if ( configUSE_RECURSIVE_MUTEXES == 1 ) |
| 573 | |
| 574 | BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex ) |
| 575 | { |
| 576 | BaseType_t xReturn; |
| 577 | Queue_t * const pxMutex = ( Queue_t * ) xMutex; |
| 578 | |
| 579 | configASSERT( pxMutex ); |
| 580 | |
| 581 | /* If this is the task that holds the mutex then pxMutexHolder will not |
| 582 | change outside of this task. If this task does not hold the mutex then |
| 583 | pxMutexHolder can never coincidentally equal the tasks handle, and as |
| 584 | this is the only condition we are interested in it does not matter if |
| 585 | pxMutexHolder is accessed simultaneously by another task. Therefore no |
| 586 | mutual exclusion is required to test the pxMutexHolder variable. */ |
| 587 | if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Not a redundant cast as TaskHandle_t is a typedef. */ |
| 588 | { |
| 589 | traceGIVE_MUTEX_RECURSIVE( pxMutex ); |
| 590 | |
| 591 | /* uxRecursiveCallCount cannot be zero if pxMutexHolder is equal to |
| 592 | the task handle, therefore no underflow check is required. Also, |
| 593 | uxRecursiveCallCount is only modified by the mutex holder, and as |
| 594 | there can only be one, no mutual exclusion is required to modify the |
| 595 | uxRecursiveCallCount member. */ |
| 596 | ( pxMutex->u.uxRecursiveCallCount )--; |
| 597 | |
| 598 | /* Has the recursive call count unwound to 0? */ |
| 599 | if( pxMutex->u.uxRecursiveCallCount == ( UBaseType_t ) 0 ) |
| 600 | { |
| 601 | /* Return the mutex. This will automatically unblock any other |
| 602 | task that might be waiting to access the mutex. */ |
| 603 | ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK ); |
| 604 | } |
| 605 | else |
| 606 | { |
| 607 | mtCOVERAGE_TEST_MARKER(); |
| 608 | } |
| 609 | |
| 610 | xReturn = pdPASS; |
| 611 | } |
| 612 | else |
| 613 | { |
| 614 | /* The mutex cannot be given because the calling task is not the |
| 615 | holder. */ |
| 616 | xReturn = pdFAIL; |
| 617 | |
| 618 | traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex ); |
| 619 | } |
| 620 | |
| 621 | return xReturn; |
| 622 | } |
| 623 | |
| 624 | #endif /* configUSE_RECURSIVE_MUTEXES */ |
| 625 | /*-----------------------------------------------------------*/ |
| 626 | |
| 627 | #if ( configUSE_RECURSIVE_MUTEXES == 1 ) |
| 628 | |
| 629 | BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait ) |
| 630 | { |
| 631 | BaseType_t xReturn; |
| 632 | Queue_t * const pxMutex = ( Queue_t * ) xMutex; |
| 633 | |
| 634 | configASSERT( pxMutex ); |
| 635 | |
| 636 | /* Comments regarding mutual exclusion as per those within |
| 637 | xQueueGiveMutexRecursive(). */ |
| 638 | |
| 639 | traceTAKE_MUTEX_RECURSIVE( pxMutex ); |
| 640 | |
| 641 | if( pxMutex->pxMutexHolder == ( void * ) xTaskGetCurrentTaskHandle() ) /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */ |
| 642 | { |
| 643 | ( pxMutex->u.uxRecursiveCallCount )++; |
| 644 | xReturn = pdPASS; |
| 645 | } |
| 646 | else |
| 647 | { |
| 648 | xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait ); |
| 649 | |
| 650 | /* pdPASS will only be returned if the mutex was successfully |
| 651 | obtained. The calling task may have entered the Blocked state |
| 652 | before reaching here. */ |
| 653 | if( xReturn != pdFAIL ) |
| 654 | { |
| 655 | ( pxMutex->u.uxRecursiveCallCount )++; |
| 656 | } |
| 657 | else |
| 658 | { |
| 659 | traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex ); |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | return xReturn; |
| 664 | } |
| 665 | |
| 666 | #endif /* configUSE_RECURSIVE_MUTEXES */ |
| 667 | /*-----------------------------------------------------------*/ |
| 668 | |
| 669 | #if( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) |
| 670 | |
| 671 | QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount, StaticQueue_t *pxStaticQueue ) |
| 672 | { |
| 673 | QueueHandle_t xHandle; |
| 674 | |
| 675 | configASSERT( uxMaxCount != 0 ); |
| 676 | configASSERT( uxInitialCount <= uxMaxCount ); |
| 677 | |
| 678 | xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE ); |
| 679 | |
| 680 | if( xHandle != NULL ) |
| 681 | { |
| 682 | ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount; |
| 683 | |
| 684 | traceCREATE_COUNTING_SEMAPHORE(); |
| 685 | } |
| 686 | else |
| 687 | { |
| 688 | traceCREATE_COUNTING_SEMAPHORE_FAILED(); |
| 689 | } |
| 690 | |
| 691 | return xHandle; |
| 692 | } |
| 693 | |
| 694 | #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */ |
| 695 | /*-----------------------------------------------------------*/ |
| 696 | |
| 697 | #if( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) |
| 698 | |
| 699 | QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount ) |
| 700 | { |
| 701 | QueueHandle_t xHandle; |
| 702 | |
| 703 | configASSERT( uxMaxCount != 0 ); |
| 704 | configASSERT( uxInitialCount <= uxMaxCount ); |
| 705 | |
| 706 | xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE ); |
| 707 | |
| 708 | if( xHandle != NULL ) |
| 709 | { |
| 710 | ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount; |
| 711 | |
| 712 | traceCREATE_COUNTING_SEMAPHORE(); |
| 713 | } |
| 714 | else |
| 715 | { |
| 716 | traceCREATE_COUNTING_SEMAPHORE_FAILED(); |
| 717 | } |
| 718 | |
| 719 | return xHandle; |
| 720 | } |
| 721 | |
| 722 | #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */ |
| 723 | /*-----------------------------------------------------------*/ |
| 724 | |
| 725 | BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition ) |
| 726 | { |
| 727 | BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired; |
| 728 | TimeOut_t xTimeOut; |
| 729 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 730 | |
| 731 | configASSERT( pxQueue ); |
| 732 | configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) ); |
| 733 | configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) ); |
| 734 | #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) |
| 735 | { |
| 736 | configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) ); |
| 737 | } |
| 738 | #endif |
| 739 | |
| 740 | |
| 741 | /* This function relaxes the coding standard somewhat to allow return |
| 742 | statements within the function itself. This is done in the interest |
| 743 | of execution time efficiency. */ |
| 744 | for( ;; ) |
| 745 | { |
| 746 | taskENTER_CRITICAL(); |
| 747 | { |
| 748 | /* Is there room on the queue now? The running task must be the |
| 749 | highest priority task wanting to access the queue. If the head item |
| 750 | in the queue is to be overwritten then it does not matter if the |
| 751 | queue is full. */ |
| 752 | if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) ) |
| 753 | { |
| 754 | traceQUEUE_SEND( pxQueue ); |
| 755 | xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition ); |
| 756 | |
| 757 | #if ( configUSE_QUEUE_SETS == 1 ) |
| 758 | { |
| 759 | if( pxQueue->pxQueueSetContainer != NULL ) |
| 760 | { |
| 761 | if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) != pdFALSE ) |
| 762 | { |
| 763 | /* The queue is a member of a queue set, and posting |
| 764 | to the queue set caused a higher priority task to |
| 765 | unblock. A context switch is required. */ |
| 766 | queueYIELD_IF_USING_PREEMPTION(); |
| 767 | } |
| 768 | else |
| 769 | { |
| 770 | mtCOVERAGE_TEST_MARKER(); |
| 771 | } |
| 772 | } |
| 773 | else |
| 774 | { |
| 775 | /* If there was a task waiting for data to arrive on the |
| 776 | queue then unblock it now. */ |
| 777 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| 778 | { |
| 779 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| 780 | { |
| 781 | /* The unblocked task has a priority higher than |
| 782 | our own so yield immediately. Yes it is ok to |
| 783 | do this from within the critical section - the |
| 784 | kernel takes care of that. */ |
| 785 | queueYIELD_IF_USING_PREEMPTION(); |
| 786 | } |
| 787 | else |
| 788 | { |
| 789 | mtCOVERAGE_TEST_MARKER(); |
| 790 | } |
| 791 | } |
| 792 | else if( xYieldRequired != pdFALSE ) |
| 793 | { |
| 794 | /* This path is a special case that will only get |
| 795 | executed if the task was holding multiple mutexes |
| 796 | and the mutexes were given back in an order that is |
| 797 | different to that in which they were taken. */ |
| 798 | queueYIELD_IF_USING_PREEMPTION(); |
| 799 | } |
| 800 | else |
| 801 | { |
| 802 | mtCOVERAGE_TEST_MARKER(); |
| 803 | } |
| 804 | } |
| 805 | } |
| 806 | #else /* configUSE_QUEUE_SETS */ |
| 807 | { |
| 808 | /* If there was a task waiting for data to arrive on the |
| 809 | queue then unblock it now. */ |
| 810 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| 811 | { |
| 812 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| 813 | { |
| 814 | /* The unblocked task has a priority higher than |
| 815 | our own so yield immediately. Yes it is ok to do |
| 816 | this from within the critical section - the kernel |
| 817 | takes care of that. */ |
| 818 | queueYIELD_IF_USING_PREEMPTION(); |
| 819 | } |
| 820 | else |
| 821 | { |
| 822 | mtCOVERAGE_TEST_MARKER(); |
| 823 | } |
| 824 | } |
| 825 | else if( xYieldRequired != pdFALSE ) |
| 826 | { |
| 827 | /* This path is a special case that will only get |
| 828 | executed if the task was holding multiple mutexes and |
| 829 | the mutexes were given back in an order that is |
| 830 | different to that in which they were taken. */ |
| 831 | queueYIELD_IF_USING_PREEMPTION(); |
| 832 | } |
| 833 | else |
| 834 | { |
| 835 | mtCOVERAGE_TEST_MARKER(); |
| 836 | } |
| 837 | } |
| 838 | #endif /* configUSE_QUEUE_SETS */ |
| 839 | |
| 840 | taskEXIT_CRITICAL(); |
| 841 | return pdPASS; |
| 842 | } |
| 843 | else |
| 844 | { |
| 845 | if( xTicksToWait == ( TickType_t ) 0 ) |
| 846 | { |
| 847 | /* The queue was full and no block time is specified (or |
| 848 | the block time has expired) so leave now. */ |
| 849 | taskEXIT_CRITICAL(); |
| 850 | |
| 851 | /* Return to the original privilege level before exiting |
| 852 | the function. */ |
| 853 | traceQUEUE_SEND_FAILED( pxQueue ); |
| 854 | return errQUEUE_FULL; |
| 855 | } |
| 856 | else if( xEntryTimeSet == pdFALSE ) |
| 857 | { |
| 858 | /* The queue was full and a block time was specified so |
| 859 | configure the timeout structure. */ |
| 860 | vTaskInternalSetTimeOutState( &xTimeOut ); |
| 861 | xEntryTimeSet = pdTRUE; |
| 862 | } |
| 863 | else |
| 864 | { |
| 865 | /* Entry time was already set. */ |
| 866 | mtCOVERAGE_TEST_MARKER(); |
| 867 | } |
| 868 | } |
| 869 | } |
| 870 | taskEXIT_CRITICAL(); |
| 871 | |
| 872 | /* Interrupts and other tasks can send to and receive from the queue |
| 873 | now the critical section has been exited. */ |
| 874 | |
| 875 | vTaskSuspendAll(); |
| 876 | prvLockQueue( pxQueue ); |
| 877 | |
| 878 | /* Update the timeout state to see if it has expired yet. */ |
| 879 | if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE ) |
| 880 | { |
| 881 | if( prvIsQueueFull( pxQueue ) != pdFALSE ) |
| 882 | { |
| 883 | traceBLOCKING_ON_QUEUE_SEND( pxQueue ); |
| 884 | vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait ); |
| 885 | |
| 886 | /* Unlocking the queue means queue events can effect the |
| 887 | event list. It is possible that interrupts occurring now |
| 888 | remove this task from the event list again - but as the |
| 889 | scheduler is suspended the task will go onto the pending |
| 890 | ready last instead of the actual ready list. */ |
| 891 | prvUnlockQueue( pxQueue ); |
| 892 | |
| 893 | /* Resuming the scheduler will move tasks from the pending |
| 894 | ready list into the ready list - so it is feasible that this |
| 895 | task is already in a ready list before it yields - in which |
| 896 | case the yield will not cause a context switch unless there |
| 897 | is also a higher priority task in the pending ready list. */ |
| 898 | if( xTaskResumeAll() == pdFALSE ) |
| 899 | { |
| 900 | portYIELD_WITHIN_API(); |
| 901 | } |
| 902 | } |
| 903 | else |
| 904 | { |
| 905 | /* Try again. */ |
| 906 | prvUnlockQueue( pxQueue ); |
| 907 | ( void ) xTaskResumeAll(); |
| 908 | } |
| 909 | } |
| 910 | else |
| 911 | { |
| 912 | /* The timeout has expired. */ |
| 913 | prvUnlockQueue( pxQueue ); |
| 914 | ( void ) xTaskResumeAll(); |
| 915 | |
| 916 | traceQUEUE_SEND_FAILED( pxQueue ); |
| 917 | return errQUEUE_FULL; |
| 918 | } |
| 919 | } |
| 920 | } |
| 921 | /*-----------------------------------------------------------*/ |
| 922 | |
| 923 | BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue, const void * const pvItemToQueue, BaseType_t * const pxHigherPriorityTaskWoken, const BaseType_t xCopyPosition ) |
| 924 | { |
| 925 | BaseType_t xReturn; |
| 926 | UBaseType_t uxSavedInterruptStatus; |
| 927 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 928 | |
| 929 | configASSERT( pxQueue ); |
| 930 | configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) ); |
| 931 | configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) ); |
| 932 | |
| 933 | /* RTOS ports that support interrupt nesting have the concept of a maximum |
| 934 | system call (or maximum API call) interrupt priority. Interrupts that are |
| 935 | above the maximum system call priority are kept permanently enabled, even |
| 936 | when the RTOS kernel is in a critical section, but cannot make any calls to |
| 937 | FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h |
| 938 | then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| 939 | failure if a FreeRTOS API function is called from an interrupt that has been |
| 940 | assigned a priority above the configured maximum system call priority. |
| 941 | Only FreeRTOS functions that end in FromISR can be called from interrupts |
| 942 | that have been assigned a priority at or (logically) below the maximum |
| 943 | system call interrupt priority. FreeRTOS maintains a separate interrupt |
| 944 | safe API to ensure interrupt entry is as fast and as simple as possible. |
| 945 | More information (albeit Cortex-M specific) is provided on the following |
| 946 | link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */ |
| 947 | portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| 948 | |
| 949 | /* Similar to xQueueGenericSend, except without blocking if there is no room |
| 950 | in the queue. Also don't directly wake a task that was blocked on a queue |
| 951 | read, instead return a flag to say whether a context switch is required or |
| 952 | not (i.e. has a task with a higher priority than us been woken by this |
| 953 | post). */ |
| 954 | uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); |
| 955 | { |
| 956 | if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) ) |
| 957 | { |
| 958 | const int8_t cTxLock = pxQueue->cTxLock; |
| 959 | |
| 960 | traceQUEUE_SEND_FROM_ISR( pxQueue ); |
| 961 | |
| 962 | /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a |
| 963 | semaphore or mutex. That means prvCopyDataToQueue() cannot result |
| 964 | in a task disinheriting a priority and prvCopyDataToQueue() can be |
| 965 | called here even though the disinherit function does not check if |
| 966 | the scheduler is suspended before accessing the ready lists. */ |
| 967 | ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition ); |
| 968 | |
| 969 | /* The event list is not altered if the queue is locked. This will |
| 970 | be done when the queue is unlocked later. */ |
| 971 | if( cTxLock == queueUNLOCKED ) |
| 972 | { |
| 973 | #if ( configUSE_QUEUE_SETS == 1 ) |
| 974 | { |
| 975 | if( pxQueue->pxQueueSetContainer != NULL ) |
| 976 | { |
| 977 | if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) != pdFALSE ) |
| 978 | { |
| 979 | /* The queue is a member of a queue set, and posting |
| 980 | to the queue set caused a higher priority task to |
| 981 | unblock. A context switch is required. */ |
| 982 | if( pxHigherPriorityTaskWoken != NULL ) |
| 983 | { |
| 984 | *pxHigherPriorityTaskWoken = pdTRUE; |
| 985 | } |
| 986 | else |
| 987 | { |
| 988 | mtCOVERAGE_TEST_MARKER(); |
| 989 | } |
| 990 | } |
| 991 | else |
| 992 | { |
| 993 | mtCOVERAGE_TEST_MARKER(); |
| 994 | } |
| 995 | } |
| 996 | else |
| 997 | { |
| 998 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| 999 | { |
| 1000 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| 1001 | { |
| 1002 | /* The task waiting has a higher priority so |
| 1003 | record that a context switch is required. */ |
| 1004 | if( pxHigherPriorityTaskWoken != NULL ) |
| 1005 | { |
| 1006 | *pxHigherPriorityTaskWoken = pdTRUE; |
| 1007 | } |
| 1008 | else |
| 1009 | { |
| 1010 | mtCOVERAGE_TEST_MARKER(); |
| 1011 | } |
| 1012 | } |
| 1013 | else |
| 1014 | { |
| 1015 | mtCOVERAGE_TEST_MARKER(); |
| 1016 | } |
| 1017 | } |
| 1018 | else |
| 1019 | { |
| 1020 | mtCOVERAGE_TEST_MARKER(); |
| 1021 | } |
| 1022 | } |
| 1023 | } |
| 1024 | #else /* configUSE_QUEUE_SETS */ |
| 1025 | { |
| 1026 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| 1027 | { |
| 1028 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| 1029 | { |
| 1030 | /* The task waiting has a higher priority so record that a |
| 1031 | context switch is required. */ |
| 1032 | if( pxHigherPriorityTaskWoken != NULL ) |
| 1033 | { |
| 1034 | *pxHigherPriorityTaskWoken = pdTRUE; |
| 1035 | } |
| 1036 | else |
| 1037 | { |
| 1038 | mtCOVERAGE_TEST_MARKER(); |
| 1039 | } |
| 1040 | } |
| 1041 | else |
| 1042 | { |
| 1043 | mtCOVERAGE_TEST_MARKER(); |
| 1044 | } |
| 1045 | } |
| 1046 | else |
| 1047 | { |
| 1048 | mtCOVERAGE_TEST_MARKER(); |
| 1049 | } |
| 1050 | } |
| 1051 | #endif /* configUSE_QUEUE_SETS */ |
| 1052 | } |
| 1053 | else |
| 1054 | { |
| 1055 | /* Increment the lock count so the task that unlocks the queue |
| 1056 | knows that data was posted while it was locked. */ |
| 1057 | pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 ); |
| 1058 | } |
| 1059 | |
| 1060 | xReturn = pdPASS; |
| 1061 | } |
| 1062 | else |
| 1063 | { |
| 1064 | traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue ); |
| 1065 | xReturn = errQUEUE_FULL; |
| 1066 | } |
| 1067 | } |
| 1068 | portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); |
| 1069 | |
| 1070 | return xReturn; |
| 1071 | } |
| 1072 | /*-----------------------------------------------------------*/ |
| 1073 | |
| 1074 | BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue, BaseType_t * const pxHigherPriorityTaskWoken ) |
| 1075 | { |
| 1076 | BaseType_t xReturn; |
| 1077 | UBaseType_t uxSavedInterruptStatus; |
| 1078 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 1079 | |
| 1080 | /* Similar to xQueueGenericSendFromISR() but used with semaphores where the |
| 1081 | item size is 0. Don't directly wake a task that was blocked on a queue |
| 1082 | read, instead return a flag to say whether a context switch is required or |
| 1083 | not (i.e. has a task with a higher priority than us been woken by this |
| 1084 | post). */ |
| 1085 | |
| 1086 | configASSERT( pxQueue ); |
| 1087 | |
| 1088 | /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR() |
| 1089 | if the item size is not 0. */ |
| 1090 | configASSERT( pxQueue->uxItemSize == 0 ); |
| 1091 | |
| 1092 | /* Normally a mutex would not be given from an interrupt, especially if |
| 1093 | there is a mutex holder, as priority inheritance makes no sense for an |
| 1094 | interrupts, only tasks. */ |
| 1095 | configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->pxMutexHolder != NULL ) ) ); |
| 1096 | |
| 1097 | /* RTOS ports that support interrupt nesting have the concept of a maximum |
| 1098 | system call (or maximum API call) interrupt priority. Interrupts that are |
| 1099 | above the maximum system call priority are kept permanently enabled, even |
| 1100 | when the RTOS kernel is in a critical section, but cannot make any calls to |
| 1101 | FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h |
| 1102 | then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| 1103 | failure if a FreeRTOS API function is called from an interrupt that has been |
| 1104 | assigned a priority above the configured maximum system call priority. |
| 1105 | Only FreeRTOS functions that end in FromISR can be called from interrupts |
| 1106 | that have been assigned a priority at or (logically) below the maximum |
| 1107 | system call interrupt priority. FreeRTOS maintains a separate interrupt |
| 1108 | safe API to ensure interrupt entry is as fast and as simple as possible. |
| 1109 | More information (albeit Cortex-M specific) is provided on the following |
| 1110 | link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */ |
| 1111 | portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| 1112 | |
| 1113 | uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); |
| 1114 | { |
| 1115 | const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting; |
| 1116 | |
| 1117 | /* When the queue is used to implement a semaphore no data is ever |
| 1118 | moved through the queue but it is still valid to see if the queue 'has |
| 1119 | space'. */ |
| 1120 | if( uxMessagesWaiting < pxQueue->uxLength ) |
| 1121 | { |
| 1122 | const int8_t cTxLock = pxQueue->cTxLock; |
| 1123 | |
| 1124 | traceQUEUE_SEND_FROM_ISR( pxQueue ); |
| 1125 | |
| 1126 | /* A task can only have an inherited priority if it is a mutex |
| 1127 | holder - and if there is a mutex holder then the mutex cannot be |
| 1128 | given from an ISR. As this is the ISR version of the function it |
| 1129 | can be assumed there is no mutex holder and no need to determine if |
| 1130 | priority disinheritance is needed. Simply increase the count of |
| 1131 | messages (semaphores) available. */ |
| 1132 | pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1; |
| 1133 | |
| 1134 | /* The event list is not altered if the queue is locked. This will |
| 1135 | be done when the queue is unlocked later. */ |
| 1136 | if( cTxLock == queueUNLOCKED ) |
| 1137 | { |
| 1138 | #if ( configUSE_QUEUE_SETS == 1 ) |
| 1139 | { |
| 1140 | if( pxQueue->pxQueueSetContainer != NULL ) |
| 1141 | { |
| 1142 | if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) != pdFALSE ) |
| 1143 | { |
| 1144 | /* The semaphore is a member of a queue set, and |
| 1145 | posting to the queue set caused a higher priority |
| 1146 | task to unblock. A context switch is required. */ |
| 1147 | if( pxHigherPriorityTaskWoken != NULL ) |
| 1148 | { |
| 1149 | *pxHigherPriorityTaskWoken = pdTRUE; |
| 1150 | } |
| 1151 | else |
| 1152 | { |
| 1153 | mtCOVERAGE_TEST_MARKER(); |
| 1154 | } |
| 1155 | } |
| 1156 | else |
| 1157 | { |
| 1158 | mtCOVERAGE_TEST_MARKER(); |
| 1159 | } |
| 1160 | } |
| 1161 | else |
| 1162 | { |
| 1163 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| 1164 | { |
| 1165 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| 1166 | { |
| 1167 | /* The task waiting has a higher priority so |
| 1168 | record that a context switch is required. */ |
| 1169 | if( pxHigherPriorityTaskWoken != NULL ) |
| 1170 | { |
| 1171 | *pxHigherPriorityTaskWoken = pdTRUE; |
| 1172 | } |
| 1173 | else |
| 1174 | { |
| 1175 | mtCOVERAGE_TEST_MARKER(); |
| 1176 | } |
| 1177 | } |
| 1178 | else |
| 1179 | { |
| 1180 | mtCOVERAGE_TEST_MARKER(); |
| 1181 | } |
| 1182 | } |
| 1183 | else |
| 1184 | { |
| 1185 | mtCOVERAGE_TEST_MARKER(); |
| 1186 | } |
| 1187 | } |
| 1188 | } |
| 1189 | #else /* configUSE_QUEUE_SETS */ |
| 1190 | { |
| 1191 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| 1192 | { |
| 1193 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| 1194 | { |
| 1195 | /* The task waiting has a higher priority so record that a |
| 1196 | context switch is required. */ |
| 1197 | if( pxHigherPriorityTaskWoken != NULL ) |
| 1198 | { |
| 1199 | *pxHigherPriorityTaskWoken = pdTRUE; |
| 1200 | } |
| 1201 | else |
| 1202 | { |
| 1203 | mtCOVERAGE_TEST_MARKER(); |
| 1204 | } |
| 1205 | } |
| 1206 | else |
| 1207 | { |
| 1208 | mtCOVERAGE_TEST_MARKER(); |
| 1209 | } |
| 1210 | } |
| 1211 | else |
| 1212 | { |
| 1213 | mtCOVERAGE_TEST_MARKER(); |
| 1214 | } |
| 1215 | } |
| 1216 | #endif /* configUSE_QUEUE_SETS */ |
| 1217 | } |
| 1218 | else |
| 1219 | { |
| 1220 | /* Increment the lock count so the task that unlocks the queue |
| 1221 | knows that data was posted while it was locked. */ |
| 1222 | pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 ); |
| 1223 | } |
| 1224 | |
| 1225 | xReturn = pdPASS; |
| 1226 | } |
| 1227 | else |
| 1228 | { |
| 1229 | traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue ); |
| 1230 | xReturn = errQUEUE_FULL; |
| 1231 | } |
| 1232 | } |
| 1233 | portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); |
| 1234 | |
| 1235 | return xReturn; |
| 1236 | } |
| 1237 | /*-----------------------------------------------------------*/ |
| 1238 | |
| 1239 | BaseType_t xQueueReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait ) |
| 1240 | { |
| 1241 | BaseType_t xEntryTimeSet = pdFALSE; |
| 1242 | TimeOut_t xTimeOut; |
| 1243 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 1244 | |
| 1245 | /* Check the pointer is not NULL. */ |
| 1246 | configASSERT( ( pxQueue ) ); |
| 1247 | |
| 1248 | /* The buffer into which data is received can only be NULL if the data size |
| 1249 | is zero (so no data is copied into the buffer. */ |
| 1250 | configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) ); |
| 1251 | |
| 1252 | /* Cannot block if the scheduler is suspended. */ |
| 1253 | #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) |
| 1254 | { |
| 1255 | configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) ); |
| 1256 | } |
| 1257 | #endif |
| 1258 | |
| 1259 | |
| 1260 | /* This function relaxes the coding standard somewhat to allow return |
| 1261 | statements within the function itself. This is done in the interest |
| 1262 | of execution time efficiency. */ |
| 1263 | |
| 1264 | for( ;; ) |
| 1265 | { |
| 1266 | taskENTER_CRITICAL(); |
| 1267 | { |
| 1268 | const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting; |
| 1269 | |
| 1270 | /* Is there data in the queue now? To be running the calling task |
| 1271 | must be the highest priority task wanting to access the queue. */ |
| 1272 | if( uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| 1273 | { |
| 1274 | /* Data available, remove one item. */ |
| 1275 | prvCopyDataFromQueue( pxQueue, pvBuffer ); |
| 1276 | traceQUEUE_RECEIVE( pxQueue ); |
| 1277 | pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1; |
| 1278 | |
| 1279 | /* There is now space in the queue, were any tasks waiting to |
| 1280 | post to the queue? If so, unblock the highest priority waiting |
| 1281 | task. */ |
| 1282 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| 1283 | { |
| 1284 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| 1285 | { |
| 1286 | queueYIELD_IF_USING_PREEMPTION(); |
| 1287 | } |
| 1288 | else |
| 1289 | { |
| 1290 | mtCOVERAGE_TEST_MARKER(); |
| 1291 | } |
| 1292 | } |
| 1293 | else |
| 1294 | { |
| 1295 | mtCOVERAGE_TEST_MARKER(); |
| 1296 | } |
| 1297 | |
| 1298 | taskEXIT_CRITICAL(); |
| 1299 | return pdPASS; |
| 1300 | } |
| 1301 | else |
| 1302 | { |
| 1303 | if( xTicksToWait == ( TickType_t ) 0 ) |
| 1304 | { |
| 1305 | /* The queue was empty and no block time is specified (or |
| 1306 | the block time has expired) so leave now. */ |
| 1307 | taskEXIT_CRITICAL(); |
| 1308 | traceQUEUE_RECEIVE_FAILED( pxQueue ); |
| 1309 | return errQUEUE_EMPTY; |
| 1310 | } |
| 1311 | else if( xEntryTimeSet == pdFALSE ) |
| 1312 | { |
| 1313 | /* The queue was empty and a block time was specified so |
| 1314 | configure the timeout structure. */ |
| 1315 | vTaskInternalSetTimeOutState( &xTimeOut ); |
| 1316 | xEntryTimeSet = pdTRUE; |
| 1317 | } |
| 1318 | else |
| 1319 | { |
| 1320 | /* Entry time was already set. */ |
| 1321 | mtCOVERAGE_TEST_MARKER(); |
| 1322 | } |
| 1323 | } |
| 1324 | } |
| 1325 | taskEXIT_CRITICAL(); |
| 1326 | |
| 1327 | /* Interrupts and other tasks can send to and receive from the queue |
| 1328 | now the critical section has been exited. */ |
| 1329 | |
| 1330 | vTaskSuspendAll(); |
| 1331 | prvLockQueue( pxQueue ); |
| 1332 | |
| 1333 | /* Update the timeout state to see if it has expired yet. */ |
| 1334 | if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE ) |
| 1335 | { |
| 1336 | /* The timeout has not expired. If the queue is still empty place |
| 1337 | the task on the list of tasks waiting to receive from the queue. */ |
| 1338 | if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) |
| 1339 | { |
| 1340 | traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue ); |
| 1341 | vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait ); |
| 1342 | prvUnlockQueue( pxQueue ); |
| 1343 | if( xTaskResumeAll() == pdFALSE ) |
| 1344 | { |
| 1345 | portYIELD_WITHIN_API(); |
| 1346 | } |
| 1347 | else |
| 1348 | { |
| 1349 | mtCOVERAGE_TEST_MARKER(); |
| 1350 | } |
| 1351 | } |
| 1352 | else |
| 1353 | { |
| 1354 | /* The queue contains data again. Loop back to try and read the |
| 1355 | data. */ |
| 1356 | prvUnlockQueue( pxQueue ); |
| 1357 | ( void ) xTaskResumeAll(); |
| 1358 | } |
| 1359 | } |
| 1360 | else |
| 1361 | { |
| 1362 | /* Timed out. If there is no data in the queue exit, otherwise loop |
| 1363 | back and attempt to read the data. */ |
| 1364 | prvUnlockQueue( pxQueue ); |
| 1365 | ( void ) xTaskResumeAll(); |
| 1366 | |
| 1367 | if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) |
| 1368 | { |
| 1369 | traceQUEUE_RECEIVE_FAILED( pxQueue ); |
| 1370 | return errQUEUE_EMPTY; |
| 1371 | } |
| 1372 | else |
| 1373 | { |
| 1374 | mtCOVERAGE_TEST_MARKER(); |
| 1375 | } |
| 1376 | } |
| 1377 | } |
| 1378 | } |
| 1379 | /*-----------------------------------------------------------*/ |
| 1380 | |
| 1381 | BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue, TickType_t xTicksToWait ) |
| 1382 | { |
| 1383 | BaseType_t xEntryTimeSet = pdFALSE; |
| 1384 | TimeOut_t xTimeOut; |
| 1385 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 1386 | |
| 1387 | #if( configUSE_MUTEXES == 1 ) |
| 1388 | BaseType_t xInheritanceOccurred = pdFALSE; |
| 1389 | #endif |
| 1390 | |
| 1391 | /* Check the queue pointer is not NULL. */ |
| 1392 | configASSERT( ( pxQueue ) ); |
| 1393 | |
| 1394 | /* Check this really is a semaphore, in which case the item size will be |
| 1395 | 0. */ |
| 1396 | configASSERT( pxQueue->uxItemSize == 0 ); |
| 1397 | |
| 1398 | /* Cannot block if the scheduler is suspended. */ |
| 1399 | #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) |
| 1400 | { |
| 1401 | configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) ); |
| 1402 | } |
| 1403 | #endif |
| 1404 | |
| 1405 | |
| 1406 | /* This function relaxes the coding standard somewhat to allow return |
| 1407 | statements within the function itself. This is done in the interest |
| 1408 | of execution time efficiency. */ |
| 1409 | |
| 1410 | for( ;; ) |
| 1411 | { |
| 1412 | taskENTER_CRITICAL(); |
| 1413 | { |
| 1414 | /* Semaphores are queues with an item size of 0, and where the |
| 1415 | number of messages in the queue is the semaphore's count value. */ |
| 1416 | const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting; |
| 1417 | |
| 1418 | /* Is there data in the queue now? To be running the calling task |
| 1419 | must be the highest priority task wanting to access the queue. */ |
| 1420 | if( uxSemaphoreCount > ( UBaseType_t ) 0 ) |
| 1421 | { |
| 1422 | traceQUEUE_RECEIVE( pxQueue ); |
| 1423 | |
| 1424 | /* Semaphores are queues with a data size of zero and where the |
| 1425 | messages waiting is the semaphore's count. Reduce the count. */ |
| 1426 | pxQueue->uxMessagesWaiting = uxSemaphoreCount - ( UBaseType_t ) 1; |
| 1427 | |
| 1428 | #if ( configUSE_MUTEXES == 1 ) |
| 1429 | { |
| 1430 | if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) |
| 1431 | { |
| 1432 | /* Record the information required to implement |
| 1433 | priority inheritance should it become necessary. */ |
| 1434 | pxQueue->pxMutexHolder = ( int8_t * ) pvTaskIncrementMutexHeldCount(); /*lint !e961 Cast is not redundant as TaskHandle_t is a typedef. */ |
| 1435 | } |
| 1436 | else |
| 1437 | { |
| 1438 | mtCOVERAGE_TEST_MARKER(); |
| 1439 | } |
| 1440 | } |
| 1441 | #endif /* configUSE_MUTEXES */ |
| 1442 | |
| 1443 | /* Check to see if other tasks are blocked waiting to give the |
| 1444 | semaphore, and if so, unblock the highest priority such task. */ |
| 1445 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| 1446 | { |
| 1447 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| 1448 | { |
| 1449 | queueYIELD_IF_USING_PREEMPTION(); |
| 1450 | } |
| 1451 | else |
| 1452 | { |
| 1453 | mtCOVERAGE_TEST_MARKER(); |
| 1454 | } |
| 1455 | } |
| 1456 | else |
| 1457 | { |
| 1458 | mtCOVERAGE_TEST_MARKER(); |
| 1459 | } |
| 1460 | |
| 1461 | taskEXIT_CRITICAL(); |
| 1462 | return pdPASS; |
| 1463 | } |
| 1464 | else |
| 1465 | { |
| 1466 | if( xTicksToWait == ( TickType_t ) 0 ) |
| 1467 | { |
| 1468 | /* For inheritance to have occurred there must have been an |
| 1469 | initial timeout, and an adjusted timeout cannot become 0, as |
| 1470 | if it were 0 the function would have exited. */ |
| 1471 | #if( configUSE_MUTEXES == 1 ) |
| 1472 | { |
| 1473 | configASSERT( xInheritanceOccurred == pdFALSE ); |
| 1474 | } |
| 1475 | #endif /* configUSE_MUTEXES */ |
| 1476 | |
| 1477 | /* The semaphore count was 0 and no block time is specified |
| 1478 | (or the block time has expired) so exit now. */ |
| 1479 | taskEXIT_CRITICAL(); |
| 1480 | traceQUEUE_RECEIVE_FAILED( pxQueue ); |
| 1481 | return errQUEUE_EMPTY; |
| 1482 | } |
| 1483 | else if( xEntryTimeSet == pdFALSE ) |
| 1484 | { |
| 1485 | /* The semaphore count was 0 and a block time was specified |
| 1486 | so configure the timeout structure ready to block. */ |
| 1487 | vTaskInternalSetTimeOutState( &xTimeOut ); |
| 1488 | xEntryTimeSet = pdTRUE; |
| 1489 | } |
| 1490 | else |
| 1491 | { |
| 1492 | /* Entry time was already set. */ |
| 1493 | mtCOVERAGE_TEST_MARKER(); |
| 1494 | } |
| 1495 | } |
| 1496 | } |
| 1497 | taskEXIT_CRITICAL(); |
| 1498 | |
| 1499 | /* Interrupts and other tasks can give to and take from the semaphore |
| 1500 | now the critical section has been exited. */ |
| 1501 | |
| 1502 | vTaskSuspendAll(); |
| 1503 | prvLockQueue( pxQueue ); |
| 1504 | |
| 1505 | /* Update the timeout state to see if it has expired yet. */ |
| 1506 | if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE ) |
| 1507 | { |
| 1508 | /* A block time is specified and not expired. If the semaphore |
| 1509 | count is 0 then enter the Blocked state to wait for a semaphore to |
| 1510 | become available. As semaphores are implemented with queues the |
| 1511 | queue being empty is equivalent to the semaphore count being 0. */ |
| 1512 | if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) |
| 1513 | { |
| 1514 | traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue ); |
| 1515 | |
| 1516 | #if ( configUSE_MUTEXES == 1 ) |
| 1517 | { |
| 1518 | if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) |
| 1519 | { |
| 1520 | taskENTER_CRITICAL(); |
| 1521 | { |
| 1522 | xInheritanceOccurred = xTaskPriorityInherit( ( void * ) pxQueue->pxMutexHolder ); |
| 1523 | } |
| 1524 | taskEXIT_CRITICAL(); |
| 1525 | } |
| 1526 | else |
| 1527 | { |
| 1528 | mtCOVERAGE_TEST_MARKER(); |
| 1529 | } |
| 1530 | } |
| 1531 | #endif |
| 1532 | |
| 1533 | vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait ); |
| 1534 | prvUnlockQueue( pxQueue ); |
| 1535 | if( xTaskResumeAll() == pdFALSE ) |
| 1536 | { |
| 1537 | portYIELD_WITHIN_API(); |
| 1538 | } |
| 1539 | else |
| 1540 | { |
| 1541 | mtCOVERAGE_TEST_MARKER(); |
| 1542 | } |
| 1543 | } |
| 1544 | else |
| 1545 | { |
| 1546 | /* There was no timeout and the semaphore count was not 0, so |
| 1547 | attempt to take the semaphore again. */ |
| 1548 | prvUnlockQueue( pxQueue ); |
| 1549 | ( void ) xTaskResumeAll(); |
| 1550 | } |
| 1551 | } |
| 1552 | else |
| 1553 | { |
| 1554 | /* Timed out. */ |
| 1555 | prvUnlockQueue( pxQueue ); |
| 1556 | ( void ) xTaskResumeAll(); |
| 1557 | |
| 1558 | /* If the semaphore count is 0 exit now as the timeout has |
| 1559 | expired. Otherwise return to attempt to take the semaphore that is |
| 1560 | known to be available. As semaphores are implemented by queues the |
| 1561 | queue being empty is equivalent to the semaphore count being 0. */ |
| 1562 | if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) |
| 1563 | { |
| 1564 | #if ( configUSE_MUTEXES == 1 ) |
| 1565 | { |
| 1566 | /* xInheritanceOccurred could only have be set if |
| 1567 | pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to |
| 1568 | test the mutex type again to check it is actually a mutex. */ |
| 1569 | if( xInheritanceOccurred != pdFALSE ) |
| 1570 | { |
| 1571 | taskENTER_CRITICAL(); |
| 1572 | { |
| 1573 | UBaseType_t uxHighestWaitingPriority; |
| 1574 | |
| 1575 | /* This task blocking on the mutex caused another |
| 1576 | task to inherit this task's priority. Now this task |
| 1577 | has timed out the priority should be disinherited |
| 1578 | again, but only as low as the next highest priority |
| 1579 | task that is waiting for the same mutex. */ |
| 1580 | uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout( pxQueue ); |
| 1581 | vTaskPriorityDisinheritAfterTimeout( ( void * ) pxQueue->pxMutexHolder, uxHighestWaitingPriority ); |
| 1582 | } |
| 1583 | taskEXIT_CRITICAL(); |
| 1584 | } |
| 1585 | } |
| 1586 | #endif /* configUSE_MUTEXES */ |
| 1587 | |
| 1588 | traceQUEUE_RECEIVE_FAILED( pxQueue ); |
| 1589 | return errQUEUE_EMPTY; |
| 1590 | } |
| 1591 | else |
| 1592 | { |
| 1593 | mtCOVERAGE_TEST_MARKER(); |
| 1594 | } |
| 1595 | } |
| 1596 | } |
| 1597 | } |
| 1598 | /*-----------------------------------------------------------*/ |
| 1599 | |
| 1600 | BaseType_t xQueuePeek( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait ) |
| 1601 | { |
| 1602 | BaseType_t xEntryTimeSet = pdFALSE; |
| 1603 | TimeOut_t xTimeOut; |
| 1604 | int8_t *pcOriginalReadPosition; |
| 1605 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 1606 | |
| 1607 | /* Check the pointer is not NULL. */ |
| 1608 | configASSERT( ( pxQueue ) ); |
| 1609 | |
| 1610 | /* The buffer into which data is received can only be NULL if the data size |
| 1611 | is zero (so no data is copied into the buffer. */ |
| 1612 | configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) ); |
| 1613 | |
| 1614 | /* Cannot block if the scheduler is suspended. */ |
| 1615 | #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) |
| 1616 | { |
| 1617 | configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) ); |
| 1618 | } |
| 1619 | #endif |
| 1620 | |
| 1621 | |
| 1622 | /* This function relaxes the coding standard somewhat to allow return |
| 1623 | statements within the function itself. This is done in the interest |
| 1624 | of execution time efficiency. */ |
| 1625 | |
| 1626 | for( ;; ) |
| 1627 | { |
| 1628 | taskENTER_CRITICAL(); |
| 1629 | { |
| 1630 | const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting; |
| 1631 | |
| 1632 | /* Is there data in the queue now? To be running the calling task |
| 1633 | must be the highest priority task wanting to access the queue. */ |
| 1634 | if( uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| 1635 | { |
| 1636 | /* Remember the read position so it can be reset after the data |
| 1637 | is read from the queue as this function is only peeking the |
| 1638 | data, not removing it. */ |
| 1639 | pcOriginalReadPosition = pxQueue->u.pcReadFrom; |
| 1640 | |
| 1641 | prvCopyDataFromQueue( pxQueue, pvBuffer ); |
| 1642 | traceQUEUE_PEEK( pxQueue ); |
| 1643 | |
| 1644 | /* The data is not being removed, so reset the read pointer. */ |
| 1645 | pxQueue->u.pcReadFrom = pcOriginalReadPosition; |
| 1646 | |
| 1647 | /* The data is being left in the queue, so see if there are |
| 1648 | any other tasks waiting for the data. */ |
| 1649 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| 1650 | { |
| 1651 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| 1652 | { |
| 1653 | /* The task waiting has a higher priority than this task. */ |
| 1654 | queueYIELD_IF_USING_PREEMPTION(); |
| 1655 | } |
| 1656 | else |
| 1657 | { |
| 1658 | mtCOVERAGE_TEST_MARKER(); |
| 1659 | } |
| 1660 | } |
| 1661 | else |
| 1662 | { |
| 1663 | mtCOVERAGE_TEST_MARKER(); |
| 1664 | } |
| 1665 | |
| 1666 | taskEXIT_CRITICAL(); |
| 1667 | return pdPASS; |
| 1668 | } |
| 1669 | else |
| 1670 | { |
| 1671 | if( xTicksToWait == ( TickType_t ) 0 ) |
| 1672 | { |
| 1673 | /* The queue was empty and no block time is specified (or |
| 1674 | the block time has expired) so leave now. */ |
| 1675 | taskEXIT_CRITICAL(); |
| 1676 | traceQUEUE_PEEK_FAILED( pxQueue ); |
| 1677 | return errQUEUE_EMPTY; |
| 1678 | } |
| 1679 | else if( xEntryTimeSet == pdFALSE ) |
| 1680 | { |
| 1681 | /* The queue was empty and a block time was specified so |
| 1682 | configure the timeout structure ready to enter the blocked |
| 1683 | state. */ |
| 1684 | vTaskInternalSetTimeOutState( &xTimeOut ); |
| 1685 | xEntryTimeSet = pdTRUE; |
| 1686 | } |
| 1687 | else |
| 1688 | { |
| 1689 | /* Entry time was already set. */ |
| 1690 | mtCOVERAGE_TEST_MARKER(); |
| 1691 | } |
| 1692 | } |
| 1693 | } |
| 1694 | taskEXIT_CRITICAL(); |
| 1695 | |
| 1696 | /* Interrupts and other tasks can send to and receive from the queue |
| 1697 | now the critical section has been exited. */ |
| 1698 | |
| 1699 | vTaskSuspendAll(); |
| 1700 | prvLockQueue( pxQueue ); |
| 1701 | |
| 1702 | /* Update the timeout state to see if it has expired yet. */ |
| 1703 | if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE ) |
| 1704 | { |
| 1705 | /* Timeout has not expired yet, check to see if there is data in the |
| 1706 | queue now, and if not enter the Blocked state to wait for data. */ |
| 1707 | if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) |
| 1708 | { |
| 1709 | traceBLOCKING_ON_QUEUE_PEEK( pxQueue ); |
| 1710 | vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait ); |
| 1711 | prvUnlockQueue( pxQueue ); |
| 1712 | if( xTaskResumeAll() == pdFALSE ) |
| 1713 | { |
| 1714 | portYIELD_WITHIN_API(); |
| 1715 | } |
| 1716 | else |
| 1717 | { |
| 1718 | mtCOVERAGE_TEST_MARKER(); |
| 1719 | } |
| 1720 | } |
| 1721 | else |
| 1722 | { |
| 1723 | /* There is data in the queue now, so don't enter the blocked |
| 1724 | state, instead return to try and obtain the data. */ |
| 1725 | prvUnlockQueue( pxQueue ); |
| 1726 | ( void ) xTaskResumeAll(); |
| 1727 | } |
| 1728 | } |
| 1729 | else |
| 1730 | { |
| 1731 | /* The timeout has expired. If there is still no data in the queue |
| 1732 | exit, otherwise go back and try to read the data again. */ |
| 1733 | prvUnlockQueue( pxQueue ); |
| 1734 | ( void ) xTaskResumeAll(); |
| 1735 | |
| 1736 | if( prvIsQueueEmpty( pxQueue ) != pdFALSE ) |
| 1737 | { |
| 1738 | traceQUEUE_PEEK_FAILED( pxQueue ); |
| 1739 | return errQUEUE_EMPTY; |
| 1740 | } |
| 1741 | else |
| 1742 | { |
| 1743 | mtCOVERAGE_TEST_MARKER(); |
| 1744 | } |
| 1745 | } |
| 1746 | } |
| 1747 | } |
| 1748 | /*-----------------------------------------------------------*/ |
| 1749 | |
| 1750 | BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue, void * const pvBuffer, BaseType_t * const pxHigherPriorityTaskWoken ) |
| 1751 | { |
| 1752 | BaseType_t xReturn; |
| 1753 | UBaseType_t uxSavedInterruptStatus; |
| 1754 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 1755 | |
| 1756 | configASSERT( pxQueue ); |
| 1757 | configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) ); |
| 1758 | |
| 1759 | /* RTOS ports that support interrupt nesting have the concept of a maximum |
| 1760 | system call (or maximum API call) interrupt priority. Interrupts that are |
| 1761 | above the maximum system call priority are kept permanently enabled, even |
| 1762 | when the RTOS kernel is in a critical section, but cannot make any calls to |
| 1763 | FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h |
| 1764 | then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| 1765 | failure if a FreeRTOS API function is called from an interrupt that has been |
| 1766 | assigned a priority above the configured maximum system call priority. |
| 1767 | Only FreeRTOS functions that end in FromISR can be called from interrupts |
| 1768 | that have been assigned a priority at or (logically) below the maximum |
| 1769 | system call interrupt priority. FreeRTOS maintains a separate interrupt |
| 1770 | safe API to ensure interrupt entry is as fast and as simple as possible. |
| 1771 | More information (albeit Cortex-M specific) is provided on the following |
| 1772 | link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */ |
| 1773 | portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| 1774 | |
| 1775 | uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); |
| 1776 | { |
| 1777 | const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting; |
| 1778 | |
| 1779 | /* Cannot block in an ISR, so check there is data available. */ |
| 1780 | if( uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| 1781 | { |
| 1782 | const int8_t cRxLock = pxQueue->cRxLock; |
| 1783 | |
| 1784 | traceQUEUE_RECEIVE_FROM_ISR( pxQueue ); |
| 1785 | |
| 1786 | prvCopyDataFromQueue( pxQueue, pvBuffer ); |
| 1787 | pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1; |
| 1788 | |
| 1789 | /* If the queue is locked the event list will not be modified. |
| 1790 | Instead update the lock count so the task that unlocks the queue |
| 1791 | will know that an ISR has removed data while the queue was |
| 1792 | locked. */ |
| 1793 | if( cRxLock == queueUNLOCKED ) |
| 1794 | { |
| 1795 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| 1796 | { |
| 1797 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| 1798 | { |
| 1799 | /* The task waiting has a higher priority than us so |
| 1800 | force a context switch. */ |
| 1801 | if( pxHigherPriorityTaskWoken != NULL ) |
| 1802 | { |
| 1803 | *pxHigherPriorityTaskWoken = pdTRUE; |
| 1804 | } |
| 1805 | else |
| 1806 | { |
| 1807 | mtCOVERAGE_TEST_MARKER(); |
| 1808 | } |
| 1809 | } |
| 1810 | else |
| 1811 | { |
| 1812 | mtCOVERAGE_TEST_MARKER(); |
| 1813 | } |
| 1814 | } |
| 1815 | else |
| 1816 | { |
| 1817 | mtCOVERAGE_TEST_MARKER(); |
| 1818 | } |
| 1819 | } |
| 1820 | else |
| 1821 | { |
| 1822 | /* Increment the lock count so the task that unlocks the queue |
| 1823 | knows that data was removed while it was locked. */ |
| 1824 | pxQueue->cRxLock = ( int8_t ) ( cRxLock + 1 ); |
| 1825 | } |
| 1826 | |
| 1827 | xReturn = pdPASS; |
| 1828 | } |
| 1829 | else |
| 1830 | { |
| 1831 | xReturn = pdFAIL; |
| 1832 | traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue ); |
| 1833 | } |
| 1834 | } |
| 1835 | portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); |
| 1836 | |
| 1837 | return xReturn; |
| 1838 | } |
| 1839 | /*-----------------------------------------------------------*/ |
| 1840 | |
| 1841 | BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer ) |
| 1842 | { |
| 1843 | BaseType_t xReturn; |
| 1844 | UBaseType_t uxSavedInterruptStatus; |
| 1845 | int8_t *pcOriginalReadPosition; |
| 1846 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 1847 | |
| 1848 | configASSERT( pxQueue ); |
| 1849 | configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) ); |
| 1850 | configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */ |
| 1851 | |
| 1852 | /* RTOS ports that support interrupt nesting have the concept of a maximum |
| 1853 | system call (or maximum API call) interrupt priority. Interrupts that are |
| 1854 | above the maximum system call priority are kept permanently enabled, even |
| 1855 | when the RTOS kernel is in a critical section, but cannot make any calls to |
| 1856 | FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h |
| 1857 | then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion |
| 1858 | failure if a FreeRTOS API function is called from an interrupt that has been |
| 1859 | assigned a priority above the configured maximum system call priority. |
| 1860 | Only FreeRTOS functions that end in FromISR can be called from interrupts |
| 1861 | that have been assigned a priority at or (logically) below the maximum |
| 1862 | system call interrupt priority. FreeRTOS maintains a separate interrupt |
| 1863 | safe API to ensure interrupt entry is as fast and as simple as possible. |
| 1864 | More information (albeit Cortex-M specific) is provided on the following |
| 1865 | link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */ |
| 1866 | portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); |
| 1867 | |
| 1868 | uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); |
| 1869 | { |
| 1870 | /* Cannot block in an ISR, so check there is data available. */ |
| 1871 | if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| 1872 | { |
| 1873 | traceQUEUE_PEEK_FROM_ISR( pxQueue ); |
| 1874 | |
| 1875 | /* Remember the read position so it can be reset as nothing is |
| 1876 | actually being removed from the queue. */ |
| 1877 | pcOriginalReadPosition = pxQueue->u.pcReadFrom; |
| 1878 | prvCopyDataFromQueue( pxQueue, pvBuffer ); |
| 1879 | pxQueue->u.pcReadFrom = pcOriginalReadPosition; |
| 1880 | |
| 1881 | xReturn = pdPASS; |
| 1882 | } |
| 1883 | else |
| 1884 | { |
| 1885 | xReturn = pdFAIL; |
| 1886 | traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue ); |
| 1887 | } |
| 1888 | } |
| 1889 | portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); |
| 1890 | |
| 1891 | return xReturn; |
| 1892 | } |
| 1893 | /*-----------------------------------------------------------*/ |
| 1894 | |
| 1895 | UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue ) |
| 1896 | { |
| 1897 | UBaseType_t uxReturn; |
| 1898 | |
| 1899 | configASSERT( xQueue ); |
| 1900 | |
| 1901 | taskENTER_CRITICAL(); |
| 1902 | { |
| 1903 | uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting; |
| 1904 | } |
| 1905 | taskEXIT_CRITICAL(); |
| 1906 | |
| 1907 | return uxReturn; |
| 1908 | } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */ |
| 1909 | /*-----------------------------------------------------------*/ |
| 1910 | |
| 1911 | UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue ) |
| 1912 | { |
| 1913 | UBaseType_t uxReturn; |
| 1914 | Queue_t *pxQueue; |
| 1915 | |
| 1916 | pxQueue = ( Queue_t * ) xQueue; |
| 1917 | configASSERT( pxQueue ); |
| 1918 | |
| 1919 | taskENTER_CRITICAL(); |
| 1920 | { |
| 1921 | uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting; |
| 1922 | } |
| 1923 | taskEXIT_CRITICAL(); |
| 1924 | |
| 1925 | return uxReturn; |
| 1926 | } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */ |
| 1927 | /*-----------------------------------------------------------*/ |
| 1928 | |
| 1929 | UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue ) |
| 1930 | { |
| 1931 | UBaseType_t uxReturn; |
| 1932 | |
| 1933 | configASSERT( xQueue ); |
| 1934 | |
| 1935 | uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting; |
| 1936 | |
| 1937 | return uxReturn; |
| 1938 | } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */ |
| 1939 | /*-----------------------------------------------------------*/ |
| 1940 | |
| 1941 | void vQueueDelete( QueueHandle_t xQueue ) |
| 1942 | { |
| 1943 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 1944 | |
| 1945 | configASSERT( pxQueue ); |
| 1946 | traceQUEUE_DELETE( pxQueue ); |
| 1947 | |
| 1948 | #if ( configQUEUE_REGISTRY_SIZE > 0 ) |
| 1949 | { |
| 1950 | vQueueUnregisterQueue( pxQueue ); |
| 1951 | } |
| 1952 | #endif |
| 1953 | |
| 1954 | #if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) |
| 1955 | { |
| 1956 | /* The queue can only have been allocated dynamically - free it |
| 1957 | again. */ |
| 1958 | vPortFree( pxQueue ); |
| 1959 | } |
| 1960 | #elif( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) |
| 1961 | { |
| 1962 | /* The queue could have been allocated statically or dynamically, so |
| 1963 | check before attempting to free the memory. */ |
| 1964 | if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE ) |
| 1965 | { |
| 1966 | vPortFree( pxQueue ); |
| 1967 | } |
| 1968 | else |
| 1969 | { |
| 1970 | mtCOVERAGE_TEST_MARKER(); |
| 1971 | } |
| 1972 | } |
| 1973 | #else |
| 1974 | { |
| 1975 | /* The queue must have been statically allocated, so is not going to be |
| 1976 | deleted. Avoid compiler warnings about the unused parameter. */ |
| 1977 | ( void ) pxQueue; |
| 1978 | } |
| 1979 | #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ |
| 1980 | } |
| 1981 | /*-----------------------------------------------------------*/ |
| 1982 | |
| 1983 | #if ( configUSE_TRACE_FACILITY == 1 ) |
| 1984 | |
| 1985 | UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue ) |
| 1986 | { |
| 1987 | return ( ( Queue_t * ) xQueue )->uxQueueNumber; |
| 1988 | } |
| 1989 | |
| 1990 | #endif /* configUSE_TRACE_FACILITY */ |
| 1991 | /*-----------------------------------------------------------*/ |
| 1992 | |
| 1993 | #if ( configUSE_TRACE_FACILITY == 1 ) |
| 1994 | |
| 1995 | void vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber ) |
| 1996 | { |
| 1997 | ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber; |
| 1998 | } |
| 1999 | |
| 2000 | #endif /* configUSE_TRACE_FACILITY */ |
| 2001 | /*-----------------------------------------------------------*/ |
| 2002 | |
| 2003 | #if ( configUSE_TRACE_FACILITY == 1 ) |
| 2004 | |
| 2005 | uint8_t ucQueueGetQueueType( QueueHandle_t xQueue ) |
| 2006 | { |
| 2007 | return ( ( Queue_t * ) xQueue )->ucQueueType; |
| 2008 | } |
| 2009 | |
| 2010 | #endif /* configUSE_TRACE_FACILITY */ |
| 2011 | /*-----------------------------------------------------------*/ |
| 2012 | |
| 2013 | #if( configUSE_MUTEXES == 1 ) |
| 2014 | |
| 2015 | static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) |
| 2016 | { |
| 2017 | UBaseType_t uxHighestPriorityOfWaitingTasks; |
| 2018 | |
| 2019 | /* If a task waiting for a mutex causes the mutex holder to inherit a |
| 2020 | priority, but the waiting task times out, then the holder should |
| 2021 | disinherit the priority - but only down to the highest priority of any |
| 2022 | other tasks that are waiting for the same mutex. For this purpose, |
| 2023 | return the priority of the highest priority task that is waiting for the |
| 2024 | mutex. */ |
| 2025 | if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0 ) |
| 2026 | { |
| 2027 | uxHighestPriorityOfWaitingTasks = configMAX_PRIORITIES - listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) ); |
| 2028 | } |
| 2029 | else |
| 2030 | { |
| 2031 | uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY; |
| 2032 | } |
| 2033 | |
| 2034 | return uxHighestPriorityOfWaitingTasks; |
| 2035 | } |
| 2036 | |
| 2037 | #endif /* configUSE_MUTEXES */ |
| 2038 | /*-----------------------------------------------------------*/ |
| 2039 | |
| 2040 | static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue, const void *pvItemToQueue, const BaseType_t xPosition ) |
| 2041 | { |
| 2042 | BaseType_t xReturn = pdFALSE; |
| 2043 | UBaseType_t uxMessagesWaiting; |
| 2044 | |
| 2045 | /* This function is called from a critical section. */ |
| 2046 | |
| 2047 | uxMessagesWaiting = pxQueue->uxMessagesWaiting; |
| 2048 | |
| 2049 | if( pxQueue->uxItemSize == ( UBaseType_t ) 0 ) |
| 2050 | { |
| 2051 | #if ( configUSE_MUTEXES == 1 ) |
| 2052 | { |
| 2053 | if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) |
| 2054 | { |
| 2055 | /* The mutex is no longer being held. */ |
| 2056 | xReturn = xTaskPriorityDisinherit( ( void * ) pxQueue->pxMutexHolder ); |
| 2057 | pxQueue->pxMutexHolder = NULL; |
| 2058 | } |
| 2059 | else |
| 2060 | { |
| 2061 | mtCOVERAGE_TEST_MARKER(); |
| 2062 | } |
| 2063 | } |
| 2064 | #endif /* configUSE_MUTEXES */ |
| 2065 | } |
| 2066 | else if( xPosition == queueSEND_TO_BACK ) |
| 2067 | { |
| 2068 | ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. */ |
| 2069 | pxQueue->pcWriteTo += pxQueue->uxItemSize; |
| 2070 | if( pxQueue->pcWriteTo >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */ |
| 2071 | { |
| 2072 | pxQueue->pcWriteTo = pxQueue->pcHead; |
| 2073 | } |
| 2074 | else |
| 2075 | { |
| 2076 | mtCOVERAGE_TEST_MARKER(); |
| 2077 | } |
| 2078 | } |
| 2079 | else |
| 2080 | { |
| 2081 | ( void ) memcpy( ( void * ) pxQueue->u.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ |
| 2082 | pxQueue->u.pcReadFrom -= pxQueue->uxItemSize; |
| 2083 | if( pxQueue->u.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */ |
| 2084 | { |
| 2085 | pxQueue->u.pcReadFrom = ( pxQueue->pcTail - pxQueue->uxItemSize ); |
| 2086 | } |
| 2087 | else |
| 2088 | { |
| 2089 | mtCOVERAGE_TEST_MARKER(); |
| 2090 | } |
| 2091 | |
| 2092 | if( xPosition == queueOVERWRITE ) |
| 2093 | { |
| 2094 | if( uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| 2095 | { |
| 2096 | /* An item is not being added but overwritten, so subtract |
| 2097 | one from the recorded number of items in the queue so when |
| 2098 | one is added again below the number of recorded items remains |
| 2099 | correct. */ |
| 2100 | --uxMessagesWaiting; |
| 2101 | } |
| 2102 | else |
| 2103 | { |
| 2104 | mtCOVERAGE_TEST_MARKER(); |
| 2105 | } |
| 2106 | } |
| 2107 | else |
| 2108 | { |
| 2109 | mtCOVERAGE_TEST_MARKER(); |
| 2110 | } |
| 2111 | } |
| 2112 | |
| 2113 | pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1; |
| 2114 | |
| 2115 | return xReturn; |
| 2116 | } |
| 2117 | /*-----------------------------------------------------------*/ |
| 2118 | |
| 2119 | static void prvCopyDataFromQueue( Queue_t * const pxQueue, void * const pvBuffer ) |
| 2120 | { |
| 2121 | if( pxQueue->uxItemSize != ( UBaseType_t ) 0 ) |
| 2122 | { |
| 2123 | pxQueue->u.pcReadFrom += pxQueue->uxItemSize; |
| 2124 | if( pxQueue->u.pcReadFrom >= pxQueue->pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */ |
| 2125 | { |
| 2126 | pxQueue->u.pcReadFrom = pxQueue->pcHead; |
| 2127 | } |
| 2128 | else |
| 2129 | { |
| 2130 | mtCOVERAGE_TEST_MARKER(); |
| 2131 | } |
| 2132 | ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. */ |
| 2133 | } |
| 2134 | } |
| 2135 | /*-----------------------------------------------------------*/ |
| 2136 | |
| 2137 | static void prvUnlockQueue( Queue_t * const pxQueue ) |
| 2138 | { |
| 2139 | /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */ |
| 2140 | |
| 2141 | /* The lock counts contains the number of extra data items placed or |
| 2142 | removed from the queue while the queue was locked. When a queue is |
| 2143 | locked items can be added or removed, but the event lists cannot be |
| 2144 | updated. */ |
| 2145 | taskENTER_CRITICAL(); |
| 2146 | { |
| 2147 | int8_t cTxLock = pxQueue->cTxLock; |
| 2148 | |
| 2149 | /* See if data was added to the queue while it was locked. */ |
| 2150 | while( cTxLock > queueLOCKED_UNMODIFIED ) |
| 2151 | { |
| 2152 | /* Data was posted while the queue was locked. Are any tasks |
| 2153 | blocked waiting for data to become available? */ |
| 2154 | #if ( configUSE_QUEUE_SETS == 1 ) |
| 2155 | { |
| 2156 | if( pxQueue->pxQueueSetContainer != NULL ) |
| 2157 | { |
| 2158 | if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) != pdFALSE ) |
| 2159 | { |
| 2160 | /* The queue is a member of a queue set, and posting to |
| 2161 | the queue set caused a higher priority task to unblock. |
| 2162 | A context switch is required. */ |
| 2163 | vTaskMissedYield(); |
| 2164 | } |
| 2165 | else |
| 2166 | { |
| 2167 | mtCOVERAGE_TEST_MARKER(); |
| 2168 | } |
| 2169 | } |
| 2170 | else |
| 2171 | { |
| 2172 | /* Tasks that are removed from the event list will get |
| 2173 | added to the pending ready list as the scheduler is still |
| 2174 | suspended. */ |
| 2175 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| 2176 | { |
| 2177 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| 2178 | { |
| 2179 | /* The task waiting has a higher priority so record that a |
| 2180 | context switch is required. */ |
| 2181 | vTaskMissedYield(); |
| 2182 | } |
| 2183 | else |
| 2184 | { |
| 2185 | mtCOVERAGE_TEST_MARKER(); |
| 2186 | } |
| 2187 | } |
| 2188 | else |
| 2189 | { |
| 2190 | break; |
| 2191 | } |
| 2192 | } |
| 2193 | } |
| 2194 | #else /* configUSE_QUEUE_SETS */ |
| 2195 | { |
| 2196 | /* Tasks that are removed from the event list will get added to |
| 2197 | the pending ready list as the scheduler is still suspended. */ |
| 2198 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| 2199 | { |
| 2200 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| 2201 | { |
| 2202 | /* The task waiting has a higher priority so record that |
| 2203 | a context switch is required. */ |
| 2204 | vTaskMissedYield(); |
| 2205 | } |
| 2206 | else |
| 2207 | { |
| 2208 | mtCOVERAGE_TEST_MARKER(); |
| 2209 | } |
| 2210 | } |
| 2211 | else |
| 2212 | { |
| 2213 | break; |
| 2214 | } |
| 2215 | } |
| 2216 | #endif /* configUSE_QUEUE_SETS */ |
| 2217 | |
| 2218 | --cTxLock; |
| 2219 | } |
| 2220 | |
| 2221 | pxQueue->cTxLock = queueUNLOCKED; |
| 2222 | } |
| 2223 | taskEXIT_CRITICAL(); |
| 2224 | |
| 2225 | /* Do the same for the Rx lock. */ |
| 2226 | taskENTER_CRITICAL(); |
| 2227 | { |
| 2228 | int8_t cRxLock = pxQueue->cRxLock; |
| 2229 | |
| 2230 | while( cRxLock > queueLOCKED_UNMODIFIED ) |
| 2231 | { |
| 2232 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| 2233 | { |
| 2234 | if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| 2235 | { |
| 2236 | vTaskMissedYield(); |
| 2237 | } |
| 2238 | else |
| 2239 | { |
| 2240 | mtCOVERAGE_TEST_MARKER(); |
| 2241 | } |
| 2242 | |
| 2243 | --cRxLock; |
| 2244 | } |
| 2245 | else |
| 2246 | { |
| 2247 | break; |
| 2248 | } |
| 2249 | } |
| 2250 | |
| 2251 | pxQueue->cRxLock = queueUNLOCKED; |
| 2252 | } |
| 2253 | taskEXIT_CRITICAL(); |
| 2254 | } |
| 2255 | /*-----------------------------------------------------------*/ |
| 2256 | |
| 2257 | static BaseType_t prvIsQueueEmpty( const Queue_t *pxQueue ) |
| 2258 | { |
| 2259 | BaseType_t xReturn; |
| 2260 | |
| 2261 | taskENTER_CRITICAL(); |
| 2262 | { |
| 2263 | if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 ) |
| 2264 | { |
| 2265 | xReturn = pdTRUE; |
| 2266 | } |
| 2267 | else |
| 2268 | { |
| 2269 | xReturn = pdFALSE; |
| 2270 | } |
| 2271 | } |
| 2272 | taskEXIT_CRITICAL(); |
| 2273 | |
| 2274 | return xReturn; |
| 2275 | } |
| 2276 | /*-----------------------------------------------------------*/ |
| 2277 | |
| 2278 | BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue ) |
| 2279 | { |
| 2280 | BaseType_t xReturn; |
| 2281 | |
| 2282 | configASSERT( xQueue ); |
| 2283 | if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( UBaseType_t ) 0 ) |
| 2284 | { |
| 2285 | xReturn = pdTRUE; |
| 2286 | } |
| 2287 | else |
| 2288 | { |
| 2289 | xReturn = pdFALSE; |
| 2290 | } |
| 2291 | |
| 2292 | return xReturn; |
| 2293 | } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */ |
| 2294 | /*-----------------------------------------------------------*/ |
| 2295 | |
| 2296 | static BaseType_t prvIsQueueFull( const Queue_t *pxQueue ) |
| 2297 | { |
| 2298 | BaseType_t xReturn; |
| 2299 | |
| 2300 | taskENTER_CRITICAL(); |
| 2301 | { |
| 2302 | if( pxQueue->uxMessagesWaiting == pxQueue->uxLength ) |
| 2303 | { |
| 2304 | xReturn = pdTRUE; |
| 2305 | } |
| 2306 | else |
| 2307 | { |
| 2308 | xReturn = pdFALSE; |
| 2309 | } |
| 2310 | } |
| 2311 | taskEXIT_CRITICAL(); |
| 2312 | |
| 2313 | return xReturn; |
| 2314 | } |
| 2315 | /*-----------------------------------------------------------*/ |
| 2316 | |
| 2317 | BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue ) |
| 2318 | { |
| 2319 | BaseType_t xReturn; |
| 2320 | |
| 2321 | configASSERT( xQueue ); |
| 2322 | if( ( ( Queue_t * ) xQueue )->uxMessagesWaiting == ( ( Queue_t * ) xQueue )->uxLength ) |
| 2323 | { |
| 2324 | xReturn = pdTRUE; |
| 2325 | } |
| 2326 | else |
| 2327 | { |
| 2328 | xReturn = pdFALSE; |
| 2329 | } |
| 2330 | |
| 2331 | return xReturn; |
| 2332 | } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */ |
| 2333 | /*-----------------------------------------------------------*/ |
| 2334 | |
| 2335 | #if ( configUSE_CO_ROUTINES == 1 ) |
| 2336 | |
| 2337 | BaseType_t xQueueCRSend( QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait ) |
| 2338 | { |
| 2339 | BaseType_t xReturn; |
| 2340 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 2341 | |
| 2342 | /* If the queue is already full we may have to block. A critical section |
| 2343 | is required to prevent an interrupt removing something from the queue |
| 2344 | between the check to see if the queue is full and blocking on the queue. */ |
| 2345 | portDISABLE_INTERRUPTS(); |
| 2346 | { |
| 2347 | if( prvIsQueueFull( pxQueue ) != pdFALSE ) |
| 2348 | { |
| 2349 | /* The queue is full - do we want to block or just leave without |
| 2350 | posting? */ |
| 2351 | if( xTicksToWait > ( TickType_t ) 0 ) |
| 2352 | { |
| 2353 | /* As this is called from a coroutine we cannot block directly, but |
| 2354 | return indicating that we need to block. */ |
| 2355 | vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) ); |
| 2356 | portENABLE_INTERRUPTS(); |
| 2357 | return errQUEUE_BLOCKED; |
| 2358 | } |
| 2359 | else |
| 2360 | { |
| 2361 | portENABLE_INTERRUPTS(); |
| 2362 | return errQUEUE_FULL; |
| 2363 | } |
| 2364 | } |
| 2365 | } |
| 2366 | portENABLE_INTERRUPTS(); |
| 2367 | |
| 2368 | portDISABLE_INTERRUPTS(); |
| 2369 | { |
| 2370 | if( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) |
| 2371 | { |
| 2372 | /* There is room in the queue, copy the data into the queue. */ |
| 2373 | prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK ); |
| 2374 | xReturn = pdPASS; |
| 2375 | |
| 2376 | /* Were any co-routines waiting for data to become available? */ |
| 2377 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| 2378 | { |
| 2379 | /* In this instance the co-routine could be placed directly |
| 2380 | into the ready list as we are within a critical section. |
| 2381 | Instead the same pending ready list mechanism is used as if |
| 2382 | the event were caused from within an interrupt. */ |
| 2383 | if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| 2384 | { |
| 2385 | /* The co-routine waiting has a higher priority so record |
| 2386 | that a yield might be appropriate. */ |
| 2387 | xReturn = errQUEUE_YIELD; |
| 2388 | } |
| 2389 | else |
| 2390 | { |
| 2391 | mtCOVERAGE_TEST_MARKER(); |
| 2392 | } |
| 2393 | } |
| 2394 | else |
| 2395 | { |
| 2396 | mtCOVERAGE_TEST_MARKER(); |
| 2397 | } |
| 2398 | } |
| 2399 | else |
| 2400 | { |
| 2401 | xReturn = errQUEUE_FULL; |
| 2402 | } |
| 2403 | } |
| 2404 | portENABLE_INTERRUPTS(); |
| 2405 | |
| 2406 | return xReturn; |
| 2407 | } |
| 2408 | |
| 2409 | #endif /* configUSE_CO_ROUTINES */ |
| 2410 | /*-----------------------------------------------------------*/ |
| 2411 | |
| 2412 | #if ( configUSE_CO_ROUTINES == 1 ) |
| 2413 | |
| 2414 | BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait ) |
| 2415 | { |
| 2416 | BaseType_t xReturn; |
| 2417 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 2418 | |
| 2419 | /* If the queue is already empty we may have to block. A critical section |
| 2420 | is required to prevent an interrupt adding something to the queue |
| 2421 | between the check to see if the queue is empty and blocking on the queue. */ |
| 2422 | portDISABLE_INTERRUPTS(); |
| 2423 | { |
| 2424 | if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 ) |
| 2425 | { |
| 2426 | /* There are no messages in the queue, do we want to block or just |
| 2427 | leave with nothing? */ |
| 2428 | if( xTicksToWait > ( TickType_t ) 0 ) |
| 2429 | { |
| 2430 | /* As this is a co-routine we cannot block directly, but return |
| 2431 | indicating that we need to block. */ |
| 2432 | vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) ); |
| 2433 | portENABLE_INTERRUPTS(); |
| 2434 | return errQUEUE_BLOCKED; |
| 2435 | } |
| 2436 | else |
| 2437 | { |
| 2438 | portENABLE_INTERRUPTS(); |
| 2439 | return errQUEUE_FULL; |
| 2440 | } |
| 2441 | } |
| 2442 | else |
| 2443 | { |
| 2444 | mtCOVERAGE_TEST_MARKER(); |
| 2445 | } |
| 2446 | } |
| 2447 | portENABLE_INTERRUPTS(); |
| 2448 | |
| 2449 | portDISABLE_INTERRUPTS(); |
| 2450 | { |
| 2451 | if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| 2452 | { |
| 2453 | /* Data is available from the queue. */ |
| 2454 | pxQueue->u.pcReadFrom += pxQueue->uxItemSize; |
| 2455 | if( pxQueue->u.pcReadFrom >= pxQueue->pcTail ) |
| 2456 | { |
| 2457 | pxQueue->u.pcReadFrom = pxQueue->pcHead; |
| 2458 | } |
| 2459 | else |
| 2460 | { |
| 2461 | mtCOVERAGE_TEST_MARKER(); |
| 2462 | } |
| 2463 | --( pxQueue->uxMessagesWaiting ); |
| 2464 | ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize ); |
| 2465 | |
| 2466 | xReturn = pdPASS; |
| 2467 | |
| 2468 | /* Were any co-routines waiting for space to become available? */ |
| 2469 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| 2470 | { |
| 2471 | /* In this instance the co-routine could be placed directly |
| 2472 | into the ready list as we are within a critical section. |
| 2473 | Instead the same pending ready list mechanism is used as if |
| 2474 | the event were caused from within an interrupt. */ |
| 2475 | if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| 2476 | { |
| 2477 | xReturn = errQUEUE_YIELD; |
| 2478 | } |
| 2479 | else |
| 2480 | { |
| 2481 | mtCOVERAGE_TEST_MARKER(); |
| 2482 | } |
| 2483 | } |
| 2484 | else |
| 2485 | { |
| 2486 | mtCOVERAGE_TEST_MARKER(); |
| 2487 | } |
| 2488 | } |
| 2489 | else |
| 2490 | { |
| 2491 | xReturn = pdFAIL; |
| 2492 | } |
| 2493 | } |
| 2494 | portENABLE_INTERRUPTS(); |
| 2495 | |
| 2496 | return xReturn; |
| 2497 | } |
| 2498 | |
| 2499 | #endif /* configUSE_CO_ROUTINES */ |
| 2500 | /*-----------------------------------------------------------*/ |
| 2501 | |
| 2502 | #if ( configUSE_CO_ROUTINES == 1 ) |
| 2503 | |
| 2504 | BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken ) |
| 2505 | { |
| 2506 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 2507 | |
| 2508 | /* Cannot block within an ISR so if there is no space on the queue then |
| 2509 | exit without doing anything. */ |
| 2510 | if( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) |
| 2511 | { |
| 2512 | prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK ); |
| 2513 | |
| 2514 | /* We only want to wake one co-routine per ISR, so check that a |
| 2515 | co-routine has not already been woken. */ |
| 2516 | if( xCoRoutinePreviouslyWoken == pdFALSE ) |
| 2517 | { |
| 2518 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE ) |
| 2519 | { |
| 2520 | if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE ) |
| 2521 | { |
| 2522 | return pdTRUE; |
| 2523 | } |
| 2524 | else |
| 2525 | { |
| 2526 | mtCOVERAGE_TEST_MARKER(); |
| 2527 | } |
| 2528 | } |
| 2529 | else |
| 2530 | { |
| 2531 | mtCOVERAGE_TEST_MARKER(); |
| 2532 | } |
| 2533 | } |
| 2534 | else |
| 2535 | { |
| 2536 | mtCOVERAGE_TEST_MARKER(); |
| 2537 | } |
| 2538 | } |
| 2539 | else |
| 2540 | { |
| 2541 | mtCOVERAGE_TEST_MARKER(); |
| 2542 | } |
| 2543 | |
| 2544 | return xCoRoutinePreviouslyWoken; |
| 2545 | } |
| 2546 | |
| 2547 | #endif /* configUSE_CO_ROUTINES */ |
| 2548 | /*-----------------------------------------------------------*/ |
| 2549 | |
| 2550 | #if ( configUSE_CO_ROUTINES == 1 ) |
| 2551 | |
| 2552 | BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxCoRoutineWoken ) |
| 2553 | { |
| 2554 | BaseType_t xReturn; |
| 2555 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 2556 | |
| 2557 | /* We cannot block from an ISR, so check there is data available. If |
| 2558 | not then just leave without doing anything. */ |
| 2559 | if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 ) |
| 2560 | { |
| 2561 | /* Copy the data from the queue. */ |
| 2562 | pxQueue->u.pcReadFrom += pxQueue->uxItemSize; |
| 2563 | if( pxQueue->u.pcReadFrom >= pxQueue->pcTail ) |
| 2564 | { |
| 2565 | pxQueue->u.pcReadFrom = pxQueue->pcHead; |
| 2566 | } |
| 2567 | else |
| 2568 | { |
| 2569 | mtCOVERAGE_TEST_MARKER(); |
| 2570 | } |
| 2571 | --( pxQueue->uxMessagesWaiting ); |
| 2572 | ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.pcReadFrom, ( unsigned ) pxQueue->uxItemSize ); |
| 2573 | |
| 2574 | if( ( *pxCoRoutineWoken ) == pdFALSE ) |
| 2575 | { |
| 2576 | if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE ) |
| 2577 | { |
| 2578 | if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE ) |
| 2579 | { |
| 2580 | *pxCoRoutineWoken = pdTRUE; |
| 2581 | } |
| 2582 | else |
| 2583 | { |
| 2584 | mtCOVERAGE_TEST_MARKER(); |
| 2585 | } |
| 2586 | } |
| 2587 | else |
| 2588 | { |
| 2589 | mtCOVERAGE_TEST_MARKER(); |
| 2590 | } |
| 2591 | } |
| 2592 | else |
| 2593 | { |
| 2594 | mtCOVERAGE_TEST_MARKER(); |
| 2595 | } |
| 2596 | |
| 2597 | xReturn = pdPASS; |
| 2598 | } |
| 2599 | else |
| 2600 | { |
| 2601 | xReturn = pdFAIL; |
| 2602 | } |
| 2603 | |
| 2604 | return xReturn; |
| 2605 | } |
| 2606 | |
| 2607 | #endif /* configUSE_CO_ROUTINES */ |
| 2608 | /*-----------------------------------------------------------*/ |
| 2609 | |
| 2610 | #if ( configQUEUE_REGISTRY_SIZE > 0 ) |
| 2611 | |
| 2612 | void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| 2613 | { |
| 2614 | UBaseType_t ux; |
| 2615 | |
| 2616 | /* See if there is an empty space in the registry. A NULL name denotes |
| 2617 | a free slot. */ |
| 2618 | for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ ) |
| 2619 | { |
| 2620 | if( xQueueRegistry[ ux ].pcQueueName == NULL ) |
| 2621 | { |
| 2622 | /* Store the information on this queue. */ |
| 2623 | xQueueRegistry[ ux ].pcQueueName = pcQueueName; |
| 2624 | xQueueRegistry[ ux ].xHandle = xQueue; |
| 2625 | |
| 2626 | traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName ); |
| 2627 | break; |
| 2628 | } |
| 2629 | else |
| 2630 | { |
| 2631 | mtCOVERAGE_TEST_MARKER(); |
| 2632 | } |
| 2633 | } |
| 2634 | } |
| 2635 | |
| 2636 | #endif /* configQUEUE_REGISTRY_SIZE */ |
| 2637 | /*-----------------------------------------------------------*/ |
| 2638 | |
| 2639 | #if ( configQUEUE_REGISTRY_SIZE > 0 ) |
| 2640 | |
| 2641 | const char *pcQueueGetName( QueueHandle_t xQueue ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| 2642 | { |
| 2643 | UBaseType_t ux; |
| 2644 | const char *pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ |
| 2645 | |
| 2646 | /* Note there is nothing here to protect against another task adding or |
| 2647 | removing entries from the registry while it is being searched. */ |
| 2648 | for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ ) |
| 2649 | { |
| 2650 | if( xQueueRegistry[ ux ].xHandle == xQueue ) |
| 2651 | { |
| 2652 | pcReturn = xQueueRegistry[ ux ].pcQueueName; |
| 2653 | break; |
| 2654 | } |
| 2655 | else |
| 2656 | { |
| 2657 | mtCOVERAGE_TEST_MARKER(); |
| 2658 | } |
| 2659 | } |
| 2660 | |
| 2661 | return pcReturn; |
| 2662 | } /*lint !e818 xQueue cannot be a pointer to const because it is a typedef. */ |
| 2663 | |
| 2664 | #endif /* configQUEUE_REGISTRY_SIZE */ |
| 2665 | /*-----------------------------------------------------------*/ |
| 2666 | |
| 2667 | #if ( configQUEUE_REGISTRY_SIZE > 0 ) |
| 2668 | |
| 2669 | void vQueueUnregisterQueue( QueueHandle_t xQueue ) |
| 2670 | { |
| 2671 | UBaseType_t ux; |
| 2672 | |
| 2673 | /* See if the handle of the queue being unregistered in actually in the |
| 2674 | registry. */ |
| 2675 | for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ ) |
| 2676 | { |
| 2677 | if( xQueueRegistry[ ux ].xHandle == xQueue ) |
| 2678 | { |
| 2679 | /* Set the name to NULL to show that this slot if free again. */ |
| 2680 | xQueueRegistry[ ux ].pcQueueName = NULL; |
| 2681 | |
| 2682 | /* Set the handle to NULL to ensure the same queue handle cannot |
| 2683 | appear in the registry twice if it is added, removed, then |
| 2684 | added again. */ |
| 2685 | xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0; |
| 2686 | break; |
| 2687 | } |
| 2688 | else |
| 2689 | { |
| 2690 | mtCOVERAGE_TEST_MARKER(); |
| 2691 | } |
| 2692 | } |
| 2693 | |
| 2694 | } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */ |
| 2695 | |
| 2696 | #endif /* configQUEUE_REGISTRY_SIZE */ |
| 2697 | /*-----------------------------------------------------------*/ |
| 2698 | |
| 2699 | #if ( configUSE_TIMERS == 1 ) |
| 2700 | |
| 2701 | void vQueueWaitForMessageRestricted( QueueHandle_t xQueue, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely ) |
| 2702 | { |
| 2703 | Queue_t * const pxQueue = ( Queue_t * ) xQueue; |
| 2704 | |
| 2705 | /* This function should not be called by application code hence the |
| 2706 | 'Restricted' in its name. It is not part of the public API. It is |
| 2707 | designed for use by kernel code, and has special calling requirements. |
| 2708 | It can result in vListInsert() being called on a list that can only |
| 2709 | possibly ever have one item in it, so the list will be fast, but even |
| 2710 | so it should be called with the scheduler locked and not from a critical |
| 2711 | section. */ |
| 2712 | |
| 2713 | /* Only do anything if there are no messages in the queue. This function |
| 2714 | will not actually cause the task to block, just place it on a blocked |
| 2715 | list. It will not block until the scheduler is unlocked - at which |
| 2716 | time a yield will be performed. If an item is added to the queue while |
| 2717 | the queue is locked, and the calling task blocks on the queue, then the |
| 2718 | calling task will be immediately unblocked when the queue is unlocked. */ |
| 2719 | prvLockQueue( pxQueue ); |
| 2720 | if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U ) |
| 2721 | { |
| 2722 | /* There is nothing in the queue, block for the specified period. */ |
| 2723 | vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely ); |
| 2724 | } |
| 2725 | else |
| 2726 | { |
| 2727 | mtCOVERAGE_TEST_MARKER(); |
| 2728 | } |
| 2729 | prvUnlockQueue( pxQueue ); |
| 2730 | } |
| 2731 | |
| 2732 | #endif /* configUSE_TIMERS */ |
| 2733 | /*-----------------------------------------------------------*/ |
| 2734 | |
| 2735 | #if( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) |
| 2736 | |
| 2737 | QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength ) |
| 2738 | { |
| 2739 | QueueSetHandle_t pxQueue; |
| 2740 | |
| 2741 | pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET ); |
| 2742 | |
| 2743 | return pxQueue; |
| 2744 | } |
| 2745 | |
| 2746 | #endif /* configUSE_QUEUE_SETS */ |
| 2747 | /*-----------------------------------------------------------*/ |
| 2748 | |
| 2749 | #if ( configUSE_QUEUE_SETS == 1 ) |
| 2750 | |
| 2751 | BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) |
| 2752 | { |
| 2753 | BaseType_t xReturn; |
| 2754 | |
| 2755 | taskENTER_CRITICAL(); |
| 2756 | { |
| 2757 | if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL ) |
| 2758 | { |
| 2759 | /* Cannot add a queue/semaphore to more than one queue set. */ |
| 2760 | xReturn = pdFAIL; |
| 2761 | } |
| 2762 | else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 ) |
| 2763 | { |
| 2764 | /* Cannot add a queue/semaphore to a queue set if there are already |
| 2765 | items in the queue/semaphore. */ |
| 2766 | xReturn = pdFAIL; |
| 2767 | } |
| 2768 | else |
| 2769 | { |
| 2770 | ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet; |
| 2771 | xReturn = pdPASS; |
| 2772 | } |
| 2773 | } |
| 2774 | taskEXIT_CRITICAL(); |
| 2775 | |
| 2776 | return xReturn; |
| 2777 | } |
| 2778 | |
| 2779 | #endif /* configUSE_QUEUE_SETS */ |
| 2780 | /*-----------------------------------------------------------*/ |
| 2781 | |
| 2782 | #if ( configUSE_QUEUE_SETS == 1 ) |
| 2783 | |
| 2784 | BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) |
| 2785 | { |
| 2786 | BaseType_t xReturn; |
| 2787 | Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore; |
| 2788 | |
| 2789 | if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet ) |
| 2790 | { |
| 2791 | /* The queue was not a member of the set. */ |
| 2792 | xReturn = pdFAIL; |
| 2793 | } |
| 2794 | else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 ) |
| 2795 | { |
| 2796 | /* It is dangerous to remove a queue from a set when the queue is |
| 2797 | not empty because the queue set will still hold pending events for |
| 2798 | the queue. */ |
| 2799 | xReturn = pdFAIL; |
| 2800 | } |
| 2801 | else |
| 2802 | { |
| 2803 | taskENTER_CRITICAL(); |
| 2804 | { |
| 2805 | /* The queue is no longer contained in the set. */ |
| 2806 | pxQueueOrSemaphore->pxQueueSetContainer = NULL; |
| 2807 | } |
| 2808 | taskEXIT_CRITICAL(); |
| 2809 | xReturn = pdPASS; |
| 2810 | } |
| 2811 | |
| 2812 | return xReturn; |
| 2813 | } /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */ |
| 2814 | |
| 2815 | #endif /* configUSE_QUEUE_SETS */ |
| 2816 | /*-----------------------------------------------------------*/ |
| 2817 | |
| 2818 | #if ( configUSE_QUEUE_SETS == 1 ) |
| 2819 | |
| 2820 | QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet, TickType_t const xTicksToWait ) |
| 2821 | { |
| 2822 | QueueSetMemberHandle_t xReturn = NULL; |
| 2823 | |
| 2824 | ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait ); /*lint !e961 Casting from one typedef to another is not redundant. */ |
| 2825 | return xReturn; |
| 2826 | } |
| 2827 | |
| 2828 | #endif /* configUSE_QUEUE_SETS */ |
| 2829 | /*-----------------------------------------------------------*/ |
| 2830 | |
| 2831 | #if ( configUSE_QUEUE_SETS == 1 ) |
| 2832 | |
| 2833 | QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet ) |
| 2834 | { |
| 2835 | QueueSetMemberHandle_t xReturn = NULL; |
| 2836 | |
| 2837 | ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */ |
| 2838 | return xReturn; |
| 2839 | } |
| 2840 | |
| 2841 | #endif /* configUSE_QUEUE_SETS */ |
| 2842 | /*-----------------------------------------------------------*/ |
| 2843 | |
| 2844 | #if ( configUSE_QUEUE_SETS == 1 ) |
| 2845 | |
| 2846 | static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition ) |
| 2847 | { |
| 2848 | Queue_t *pxQueueSetContainer = pxQueue->pxQueueSetContainer; |
| 2849 | BaseType_t xReturn = pdFALSE; |
| 2850 | |
| 2851 | /* This function must be called form a critical section. */ |
| 2852 | |
| 2853 | configASSERT( pxQueueSetContainer ); |
| 2854 | configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength ); |
| 2855 | |
| 2856 | if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength ) |
| 2857 | { |
| 2858 | const int8_t cTxLock = pxQueueSetContainer->cTxLock; |
| 2859 | |
| 2860 | traceQUEUE_SEND( pxQueueSetContainer ); |
| 2861 | |
| 2862 | /* The data copied is the handle of the queue that contains data. */ |
| 2863 | xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, xCopyPosition ); |
| 2864 | |
| 2865 | if( cTxLock == queueUNLOCKED ) |
| 2866 | { |
| 2867 | if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE ) |
| 2868 | { |
| 2869 | if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE ) |
| 2870 | { |
| 2871 | /* The task waiting has a higher priority. */ |
| 2872 | xReturn = pdTRUE; |
| 2873 | } |
| 2874 | else |
| 2875 | { |
| 2876 | mtCOVERAGE_TEST_MARKER(); |
| 2877 | } |
| 2878 | } |
| 2879 | else |
| 2880 | { |
| 2881 | mtCOVERAGE_TEST_MARKER(); |
| 2882 | } |
| 2883 | } |
| 2884 | else |
| 2885 | { |
| 2886 | pxQueueSetContainer->cTxLock = ( int8_t ) ( cTxLock + 1 ); |
| 2887 | } |
| 2888 | } |
| 2889 | else |
| 2890 | { |
| 2891 | mtCOVERAGE_TEST_MARKER(); |
| 2892 | } |
| 2893 | |
| 2894 | return xReturn; |
| 2895 | } |
| 2896 | |
| 2897 | #endif /* configUSE_QUEUE_SETS */ |
| 2898 | |
| 2899 | |
| 2900 | |
| 2901 | |
| 2902 | |
| 2903 | |
| 2904 | |
| 2905 | |
| 2906 | |
| 2907 | |
| 2908 | |
| 2909 | |