blob: a23fa1e6251b8862b4777ca1672caa95f193e18f [file] [log] [blame]
Qiufang Dai35c31332020-05-13 15:29:06 +08001/*
2 * FreeRTOS Kernel V10.0.1
3 * Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
6 * this software and associated documentation files (the "Software"), to deal in
7 * the Software without restriction, including without limitation the rights to
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
9 * the Software, and to permit persons to whom the Software is furnished to do so,
10 * subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in all
13 * copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
17 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
18 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
19 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * http://www.FreeRTOS.org
23 * http://aws.amazon.com/freertos
24 *
25 * 1 tab == 4 spaces!
26 */
27
28
29#ifndef QUEUE_H
30#define QUEUE_H
31
32#ifndef INC_FREERTOS_H
33 #error "include FreeRTOS.h" must appear in source files before "include queue.h"
34#endif
35
36#ifdef __cplusplus
37extern "C" {
38#endif
39
40
41/**
42 * Type by which queues are referenced. For example, a call to xQueueCreate()
43 * returns an QueueHandle_t variable that can then be used as a parameter to
44 * xQueueSend(), xQueueReceive(), etc.
45 */
46typedef void * QueueHandle_t;
47
48/**
49 * Type by which queue sets are referenced. For example, a call to
50 * xQueueCreateSet() returns an xQueueSet variable that can then be used as a
51 * parameter to xQueueSelectFromSet(), xQueueAddToSet(), etc.
52 */
53typedef void * QueueSetHandle_t;
54
55/**
56 * Queue sets can contain both queues and semaphores, so the
57 * QueueSetMemberHandle_t is defined as a type to be used where a parameter or
58 * return value can be either an QueueHandle_t or an SemaphoreHandle_t.
59 */
60typedef void * QueueSetMemberHandle_t;
61
62/* For internal use only. */
63#define queueSEND_TO_BACK ( ( BaseType_t ) 0 )
64#define queueSEND_TO_FRONT ( ( BaseType_t ) 1 )
65#define queueOVERWRITE ( ( BaseType_t ) 2 )
66
67/* For internal use only. These definitions *must* match those in queue.c. */
68#define queueQUEUE_TYPE_BASE ( ( uint8_t ) 0U )
69#define queueQUEUE_TYPE_SET ( ( uint8_t ) 0U )
70#define queueQUEUE_TYPE_MUTEX ( ( uint8_t ) 1U )
71#define queueQUEUE_TYPE_COUNTING_SEMAPHORE ( ( uint8_t ) 2U )
72#define queueQUEUE_TYPE_BINARY_SEMAPHORE ( ( uint8_t ) 3U )
73#define queueQUEUE_TYPE_RECURSIVE_MUTEX ( ( uint8_t ) 4U )
74
75/**
76 * queue. h
77 * <pre>
78 QueueHandle_t xQueueCreate(
79 UBaseType_t uxQueueLength,
80 UBaseType_t uxItemSize
81 );
82 * </pre>
83 *
84 * Creates a new queue instance, and returns a handle by which the new queue
85 * can be referenced.
86 *
87 * Internally, within the FreeRTOS implementation, queues use two blocks of
88 * memory. The first block is used to hold the queue's data structures. The
89 * second block is used to hold items placed into the queue. If a queue is
90 * created using xQueueCreate() then both blocks of memory are automatically
91 * dynamically allocated inside the xQueueCreate() function. (see
92 * http://www.freertos.org/a00111.html). If a queue is created using
93 * xQueueCreateStatic() then the application writer must provide the memory that
94 * will get used by the queue. xQueueCreateStatic() therefore allows a queue to
95 * be created without using any dynamic memory allocation.
96 *
97 * http://www.FreeRTOS.org/Embedded-RTOS-Queues.html
98 *
99 * @param uxQueueLength The maximum number of items that the queue can contain.
100 *
101 * @param uxItemSize The number of bytes each item in the queue will require.
102 * Items are queued by copy, not by reference, so this is the number of bytes
103 * that will be copied for each posted item. Each item on the queue must be
104 * the same size.
105 *
106 * @return If the queue is successfully create then a handle to the newly
107 * created queue is returned. If the queue cannot be created then 0 is
108 * returned.
109 *
110 * Example usage:
111 <pre>
112 struct AMessage
113 {
114 char ucMessageID;
115 char ucData[ 20 ];
116 };
117
118 void vATask( void *pvParameters )
119 {
120 QueueHandle_t xQueue1, xQueue2;
121
122 // Create a queue capable of containing 10 uint32_t values.
123 xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
124 if( xQueue1 == 0 )
125 {
126 // Queue was not created and must not be used.
127 }
128
129 // Create a queue capable of containing 10 pointers to AMessage structures.
130 // These should be passed by pointer as they contain a lot of data.
131 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
132 if( xQueue2 == 0 )
133 {
134 // Queue was not created and must not be used.
135 }
136
137 // ... Rest of task code.
138 }
139 </pre>
140 * \defgroup xQueueCreate xQueueCreate
141 * \ingroup QueueManagement
142 */
143#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
144 #define xQueueCreate( uxQueueLength, uxItemSize ) xQueueGenericCreate( ( uxQueueLength ), ( uxItemSize ), ( queueQUEUE_TYPE_BASE ) )
145#endif
146
147/**
148 * queue. h
149 * <pre>
150 QueueHandle_t xQueueCreateStatic(
151 UBaseType_t uxQueueLength,
152 UBaseType_t uxItemSize,
153 uint8_t *pucQueueStorageBuffer,
154 StaticQueue_t *pxQueueBuffer
155 );
156 * </pre>
157 *
158 * Creates a new queue instance, and returns a handle by which the new queue
159 * can be referenced.
160 *
161 * Internally, within the FreeRTOS implementation, queues use two blocks of
162 * memory. The first block is used to hold the queue's data structures. The
163 * second block is used to hold items placed into the queue. If a queue is
164 * created using xQueueCreate() then both blocks of memory are automatically
165 * dynamically allocated inside the xQueueCreate() function. (see
166 * http://www.freertos.org/a00111.html). If a queue is created using
167 * xQueueCreateStatic() then the application writer must provide the memory that
168 * will get used by the queue. xQueueCreateStatic() therefore allows a queue to
169 * be created without using any dynamic memory allocation.
170 *
171 * http://www.FreeRTOS.org/Embedded-RTOS-Queues.html
172 *
173 * @param uxQueueLength The maximum number of items that the queue can contain.
174 *
175 * @param uxItemSize The number of bytes each item in the queue will require.
176 * Items are queued by copy, not by reference, so this is the number of bytes
177 * that will be copied for each posted item. Each item on the queue must be
178 * the same size.
179 *
180 * @param pucQueueStorageBuffer If uxItemSize is not zero then
181 * pucQueueStorageBuffer must point to a uint8_t array that is at least large
182 * enough to hold the maximum number of items that can be in the queue at any
183 * one time - which is ( uxQueueLength * uxItemsSize ) bytes. If uxItemSize is
184 * zero then pucQueueStorageBuffer can be NULL.
185 *
186 * @param pxQueueBuffer Must point to a variable of type StaticQueue_t, which
187 * will be used to hold the queue's data structure.
188 *
189 * @return If the queue is created then a handle to the created queue is
190 * returned. If pxQueueBuffer is NULL then NULL is returned.
191 *
192 * Example usage:
193 <pre>
194 struct AMessage
195 {
196 char ucMessageID;
197 char ucData[ 20 ];
198 };
199
200 #define QUEUE_LENGTH 10
201 #define ITEM_SIZE sizeof( uint32_t )
202
203 // xQueueBuffer will hold the queue structure.
204 StaticQueue_t xQueueBuffer;
205
206 // ucQueueStorage will hold the items posted to the queue. Must be at least
207 // [(queue length) * ( queue item size)] bytes long.
208 uint8_t ucQueueStorage[ QUEUE_LENGTH * ITEM_SIZE ];
209
210 void vATask( void *pvParameters )
211 {
212 QueueHandle_t xQueue1;
213
214 // Create a queue capable of containing 10 uint32_t values.
215 xQueue1 = xQueueCreate( QUEUE_LENGTH, // The number of items the queue can hold.
216 ITEM_SIZE // The size of each item in the queue
217 &( ucQueueStorage[ 0 ] ), // The buffer that will hold the items in the queue.
218 &xQueueBuffer ); // The buffer that will hold the queue structure.
219
220 // The queue is guaranteed to be created successfully as no dynamic memory
221 // allocation is used. Therefore xQueue1 is now a handle to a valid queue.
222
223 // ... Rest of task code.
224 }
225 </pre>
226 * \defgroup xQueueCreateStatic xQueueCreateStatic
227 * \ingroup QueueManagement
228 */
229#if( configSUPPORT_STATIC_ALLOCATION == 1 )
230 #define xQueueCreateStatic( uxQueueLength, uxItemSize, pucQueueStorage, pxQueueBuffer ) xQueueGenericCreateStatic( ( uxQueueLength ), ( uxItemSize ), ( pucQueueStorage ), ( pxQueueBuffer ), ( queueQUEUE_TYPE_BASE ) )
231#endif /* configSUPPORT_STATIC_ALLOCATION */
232
233/**
234 * queue. h
235 * <pre>
236 BaseType_t xQueueSendToToFront(
237 QueueHandle_t xQueue,
238 const void *pvItemToQueue,
239 TickType_t xTicksToWait
240 );
241 * </pre>
242 *
243 * Post an item to the front of a queue. The item is queued by copy, not by
244 * reference. This function must not be called from an interrupt service
245 * routine. See xQueueSendFromISR () for an alternative which may be used
246 * in an ISR.
247 *
248 * @param xQueue The handle to the queue on which the item is to be posted.
249 *
250 * @param pvItemToQueue A pointer to the item that is to be placed on the
251 * queue. The size of the items the queue will hold was defined when the
252 * queue was created, so this many bytes will be copied from pvItemToQueue
253 * into the queue storage area.
254 *
255 * @param xTicksToWait The maximum amount of time the task should block
256 * waiting for space to become available on the queue, should it already
257 * be full. The call will return immediately if this is set to 0 and the
258 * queue is full. The time is defined in tick periods so the constant
259 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
260 *
261 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
262 *
263 * Example usage:
264 <pre>
265 struct AMessage
266 {
267 char ucMessageID;
268 char ucData[ 20 ];
269 } xMessage;
270
271 uint32_t ulVar = 10UL;
272
273 void vATask( void *pvParameters )
274 {
275 QueueHandle_t xQueue1, xQueue2;
276 struct AMessage *pxMessage;
277
278 // Create a queue capable of containing 10 uint32_t values.
279 xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
280
281 // Create a queue capable of containing 10 pointers to AMessage structures.
282 // These should be passed by pointer as they contain a lot of data.
283 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
284
285 // ...
286
287 if( xQueue1 != 0 )
288 {
289 // Send an uint32_t. Wait for 10 ticks for space to become
290 // available if necessary.
291 if( xQueueSendToFront( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
292 {
293 // Failed to post the message, even after 10 ticks.
294 }
295 }
296
297 if( xQueue2 != 0 )
298 {
299 // Send a pointer to a struct AMessage object. Don't block if the
300 // queue is already full.
301 pxMessage = & xMessage;
302 xQueueSendToFront( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
303 }
304
305 // ... Rest of task code.
306 }
307 </pre>
308 * \defgroup xQueueSend xQueueSend
309 * \ingroup QueueManagement
310 */
311#define xQueueSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_FRONT )
312
313/**
314 * queue. h
315 * <pre>
316 BaseType_t xQueueSendToBack(
317 QueueHandle_t xQueue,
318 const void *pvItemToQueue,
319 TickType_t xTicksToWait
320 );
321 * </pre>
322 *
323 * This is a macro that calls xQueueGenericSend().
324 *
325 * Post an item to the back of a queue. The item is queued by copy, not by
326 * reference. This function must not be called from an interrupt service
327 * routine. See xQueueSendFromISR () for an alternative which may be used
328 * in an ISR.
329 *
330 * @param xQueue The handle to the queue on which the item is to be posted.
331 *
332 * @param pvItemToQueue A pointer to the item that is to be placed on the
333 * queue. The size of the items the queue will hold was defined when the
334 * queue was created, so this many bytes will be copied from pvItemToQueue
335 * into the queue storage area.
336 *
337 * @param xTicksToWait The maximum amount of time the task should block
338 * waiting for space to become available on the queue, should it already
339 * be full. The call will return immediately if this is set to 0 and the queue
340 * is full. The time is defined in tick periods so the constant
341 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
342 *
343 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
344 *
345 * Example usage:
346 <pre>
347 struct AMessage
348 {
349 char ucMessageID;
350 char ucData[ 20 ];
351 } xMessage;
352
353 uint32_t ulVar = 10UL;
354
355 void vATask( void *pvParameters )
356 {
357 QueueHandle_t xQueue1, xQueue2;
358 struct AMessage *pxMessage;
359
360 // Create a queue capable of containing 10 uint32_t values.
361 xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
362
363 // Create a queue capable of containing 10 pointers to AMessage structures.
364 // These should be passed by pointer as they contain a lot of data.
365 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
366
367 // ...
368
369 if( xQueue1 != 0 )
370 {
371 // Send an uint32_t. Wait for 10 ticks for space to become
372 // available if necessary.
373 if( xQueueSendToBack( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
374 {
375 // Failed to post the message, even after 10 ticks.
376 }
377 }
378
379 if( xQueue2 != 0 )
380 {
381 // Send a pointer to a struct AMessage object. Don't block if the
382 // queue is already full.
383 pxMessage = & xMessage;
384 xQueueSendToBack( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
385 }
386
387 // ... Rest of task code.
388 }
389 </pre>
390 * \defgroup xQueueSend xQueueSend
391 * \ingroup QueueManagement
392 */
393#define xQueueSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
394
395/**
396 * queue. h
397 * <pre>
398 BaseType_t xQueueSend(
399 QueueHandle_t xQueue,
400 const void * pvItemToQueue,
401 TickType_t xTicksToWait
402 );
403 * </pre>
404 *
405 * This is a macro that calls xQueueGenericSend(). It is included for
406 * backward compatibility with versions of FreeRTOS.org that did not
407 * include the xQueueSendToFront() and xQueueSendToBack() macros. It is
408 * equivalent to xQueueSendToBack().
409 *
410 * Post an item on a queue. The item is queued by copy, not by reference.
411 * This function must not be called from an interrupt service routine.
412 * See xQueueSendFromISR () for an alternative which may be used in an ISR.
413 *
414 * @param xQueue The handle to the queue on which the item is to be posted.
415 *
416 * @param pvItemToQueue A pointer to the item that is to be placed on the
417 * queue. The size of the items the queue will hold was defined when the
418 * queue was created, so this many bytes will be copied from pvItemToQueue
419 * into the queue storage area.
420 *
421 * @param xTicksToWait The maximum amount of time the task should block
422 * waiting for space to become available on the queue, should it already
423 * be full. The call will return immediately if this is set to 0 and the
424 * queue is full. The time is defined in tick periods so the constant
425 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
426 *
427 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
428 *
429 * Example usage:
430 <pre>
431 struct AMessage
432 {
433 char ucMessageID;
434 char ucData[ 20 ];
435 } xMessage;
436
437 uint32_t ulVar = 10UL;
438
439 void vATask( void *pvParameters )
440 {
441 QueueHandle_t xQueue1, xQueue2;
442 struct AMessage *pxMessage;
443
444 // Create a queue capable of containing 10 uint32_t values.
445 xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
446
447 // Create a queue capable of containing 10 pointers to AMessage structures.
448 // These should be passed by pointer as they contain a lot of data.
449 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
450
451 // ...
452
453 if( xQueue1 != 0 )
454 {
455 // Send an uint32_t. Wait for 10 ticks for space to become
456 // available if necessary.
457 if( xQueueSend( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
458 {
459 // Failed to post the message, even after 10 ticks.
460 }
461 }
462
463 if( xQueue2 != 0 )
464 {
465 // Send a pointer to a struct AMessage object. Don't block if the
466 // queue is already full.
467 pxMessage = & xMessage;
468 xQueueSend( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
469 }
470
471 // ... Rest of task code.
472 }
473 </pre>
474 * \defgroup xQueueSend xQueueSend
475 * \ingroup QueueManagement
476 */
477#define xQueueSend( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
478
479/**
480 * queue. h
481 * <pre>
482 BaseType_t xQueueOverwrite(
483 QueueHandle_t xQueue,
484 const void * pvItemToQueue
485 );
486 * </pre>
487 *
488 * Only for use with queues that have a length of one - so the queue is either
489 * empty or full.
490 *
491 * Post an item on a queue. If the queue is already full then overwrite the
492 * value held in the queue. The item is queued by copy, not by reference.
493 *
494 * This function must not be called from an interrupt service routine.
495 * See xQueueOverwriteFromISR () for an alternative which may be used in an ISR.
496 *
497 * @param xQueue The handle of the queue to which the data is being sent.
498 *
499 * @param pvItemToQueue A pointer to the item that is to be placed on the
500 * queue. The size of the items the queue will hold was defined when the
501 * queue was created, so this many bytes will be copied from pvItemToQueue
502 * into the queue storage area.
503 *
504 * @return xQueueOverwrite() is a macro that calls xQueueGenericSend(), and
505 * therefore has the same return values as xQueueSendToFront(). However, pdPASS
506 * is the only value that can be returned because xQueueOverwrite() will write
507 * to the queue even when the queue is already full.
508 *
509 * Example usage:
510 <pre>
511
512 void vFunction( void *pvParameters )
513 {
514 QueueHandle_t xQueue;
515 uint32_t ulVarToSend, ulValReceived;
516
517 // Create a queue to hold one uint32_t value. It is strongly
518 // recommended *not* to use xQueueOverwrite() on queues that can
519 // contain more than one value, and doing so will trigger an assertion
520 // if configASSERT() is defined.
521 xQueue = xQueueCreate( 1, sizeof( uint32_t ) );
522
523 // Write the value 10 to the queue using xQueueOverwrite().
524 ulVarToSend = 10;
525 xQueueOverwrite( xQueue, &ulVarToSend );
526
527 // Peeking the queue should now return 10, but leave the value 10 in
528 // the queue. A block time of zero is used as it is known that the
529 // queue holds a value.
530 ulValReceived = 0;
531 xQueuePeek( xQueue, &ulValReceived, 0 );
532
533 if( ulValReceived != 10 )
534 {
535 // Error unless the item was removed by a different task.
536 }
537
538 // The queue is still full. Use xQueueOverwrite() to overwrite the
539 // value held in the queue with 100.
540 ulVarToSend = 100;
541 xQueueOverwrite( xQueue, &ulVarToSend );
542
543 // This time read from the queue, leaving the queue empty once more.
544 // A block time of 0 is used again.
545 xQueueReceive( xQueue, &ulValReceived, 0 );
546
547 // The value read should be the last value written, even though the
548 // queue was already full when the value was written.
549 if( ulValReceived != 100 )
550 {
551 // Error!
552 }
553
554 // ...
555}
556 </pre>
557 * \defgroup xQueueOverwrite xQueueOverwrite
558 * \ingroup QueueManagement
559 */
560#define xQueueOverwrite( xQueue, pvItemToQueue ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), 0, queueOVERWRITE )
561
562
563/**
564 * queue. h
565 * <pre>
566 BaseType_t xQueueGenericSend(
567 QueueHandle_t xQueue,
568 const void * pvItemToQueue,
569 TickType_t xTicksToWait
570 BaseType_t xCopyPosition
571 );
572 * </pre>
573 *
574 * It is preferred that the macros xQueueSend(), xQueueSendToFront() and
575 * xQueueSendToBack() are used in place of calling this function directly.
576 *
577 * Post an item on a queue. The item is queued by copy, not by reference.
578 * This function must not be called from an interrupt service routine.
579 * See xQueueSendFromISR () for an alternative which may be used in an ISR.
580 *
581 * @param xQueue The handle to the queue on which the item is to be posted.
582 *
583 * @param pvItemToQueue A pointer to the item that is to be placed on the
584 * queue. The size of the items the queue will hold was defined when the
585 * queue was created, so this many bytes will be copied from pvItemToQueue
586 * into the queue storage area.
587 *
588 * @param xTicksToWait The maximum amount of time the task should block
589 * waiting for space to become available on the queue, should it already
590 * be full. The call will return immediately if this is set to 0 and the
591 * queue is full. The time is defined in tick periods so the constant
592 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
593 *
594 * @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
595 * item at the back of the queue, or queueSEND_TO_FRONT to place the item
596 * at the front of the queue (for high priority messages).
597 *
598 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
599 *
600 * Example usage:
601 <pre>
602 struct AMessage
603 {
604 char ucMessageID;
605 char ucData[ 20 ];
606 } xMessage;
607
608 uint32_t ulVar = 10UL;
609
610 void vATask( void *pvParameters )
611 {
612 QueueHandle_t xQueue1, xQueue2;
613 struct AMessage *pxMessage;
614
615 // Create a queue capable of containing 10 uint32_t values.
616 xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
617
618 // Create a queue capable of containing 10 pointers to AMessage structures.
619 // These should be passed by pointer as they contain a lot of data.
620 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
621
622 // ...
623
624 if( xQueue1 != 0 )
625 {
626 // Send an uint32_t. Wait for 10 ticks for space to become
627 // available if necessary.
628 if( xQueueGenericSend( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10, queueSEND_TO_BACK ) != pdPASS )
629 {
630 // Failed to post the message, even after 10 ticks.
631 }
632 }
633
634 if( xQueue2 != 0 )
635 {
636 // Send a pointer to a struct AMessage object. Don't block if the
637 // queue is already full.
638 pxMessage = & xMessage;
639 xQueueGenericSend( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0, queueSEND_TO_BACK );
640 }
641
642 // ... Rest of task code.
643 }
644 </pre>
645 * \defgroup xQueueSend xQueueSend
646 * \ingroup QueueManagement
647 */
648BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
649
650/**
651 * queue. h
652 * <pre>
653 BaseType_t xQueuePeek(
654 QueueHandle_t xQueue,
655 void * const pvBuffer,
656 TickType_t xTicksToWait
657 );</pre>
658 *
659 * Receive an item from a queue without removing the item from the queue.
660 * The item is received by copy so a buffer of adequate size must be
661 * provided. The number of bytes copied into the buffer was defined when
662 * the queue was created.
663 *
664 * Successfully received items remain on the queue so will be returned again
665 * by the next call, or a call to xQueueReceive().
666 *
667 * This macro must not be used in an interrupt service routine. See
668 * xQueuePeekFromISR() for an alternative that can be called from an interrupt
669 * service routine.
670 *
671 * @param xQueue The handle to the queue from which the item is to be
672 * received.
673 *
674 * @param pvBuffer Pointer to the buffer into which the received item will
675 * be copied.
676 *
677 * @param xTicksToWait The maximum amount of time the task should block
678 * waiting for an item to receive should the queue be empty at the time
679 * of the call. The time is defined in tick periods so the constant
680 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
681 * xQueuePeek() will return immediately if xTicksToWait is 0 and the queue
682 * is empty.
683 *
684 * @return pdTRUE if an item was successfully received from the queue,
685 * otherwise pdFALSE.
686 *
687 * Example usage:
688 <pre>
689 struct AMessage
690 {
691 char ucMessageID;
692 char ucData[ 20 ];
693 } xMessage;
694
695 QueueHandle_t xQueue;
696
697 // Task to create a queue and post a value.
698 void vATask( void *pvParameters )
699 {
700 struct AMessage *pxMessage;
701
702 // Create a queue capable of containing 10 pointers to AMessage structures.
703 // These should be passed by pointer as they contain a lot of data.
704 xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
705 if( xQueue == 0 )
706 {
707 // Failed to create the queue.
708 }
709
710 // ...
711
712 // Send a pointer to a struct AMessage object. Don't block if the
713 // queue is already full.
714 pxMessage = & xMessage;
715 xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
716
717 // ... Rest of task code.
718 }
719
720 // Task to peek the data from the queue.
721 void vADifferentTask( void *pvParameters )
722 {
723 struct AMessage *pxRxedMessage;
724
725 if( xQueue != 0 )
726 {
727 // Peek a message on the created queue. Block for 10 ticks if a
728 // message is not immediately available.
729 if( xQueuePeek( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
730 {
731 // pcRxedMessage now points to the struct AMessage variable posted
732 // by vATask, but the item still remains on the queue.
733 }
734 }
735
736 // ... Rest of task code.
737 }
738 </pre>
739 * \defgroup xQueuePeek xQueuePeek
740 * \ingroup QueueManagement
741 */
742BaseType_t xQueuePeek( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
743
744/**
745 * queue. h
746 * <pre>
747 BaseType_t xQueuePeekFromISR(
748 QueueHandle_t xQueue,
749 void *pvBuffer,
750 );</pre>
751 *
752 * A version of xQueuePeek() that can be called from an interrupt service
753 * routine (ISR).
754 *
755 * Receive an item from a queue without removing the item from the queue.
756 * The item is received by copy so a buffer of adequate size must be
757 * provided. The number of bytes copied into the buffer was defined when
758 * the queue was created.
759 *
760 * Successfully received items remain on the queue so will be returned again
761 * by the next call, or a call to xQueueReceive().
762 *
763 * @param xQueue The handle to the queue from which the item is to be
764 * received.
765 *
766 * @param pvBuffer Pointer to the buffer into which the received item will
767 * be copied.
768 *
769 * @return pdTRUE if an item was successfully received from the queue,
770 * otherwise pdFALSE.
771 *
772 * \defgroup xQueuePeekFromISR xQueuePeekFromISR
773 * \ingroup QueueManagement
774 */
775BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer ) PRIVILEGED_FUNCTION;
776
777/**
778 * queue. h
779 * <pre>
780 BaseType_t xQueueReceive(
781 QueueHandle_t xQueue,
782 void *pvBuffer,
783 TickType_t xTicksToWait
784 );</pre>
785 *
786 * Receive an item from a queue. The item is received by copy so a buffer of
787 * adequate size must be provided. The number of bytes copied into the buffer
788 * was defined when the queue was created.
789 *
790 * Successfully received items are removed from the queue.
791 *
792 * This function must not be used in an interrupt service routine. See
793 * xQueueReceiveFromISR for an alternative that can.
794 *
795 * @param xQueue The handle to the queue from which the item is to be
796 * received.
797 *
798 * @param pvBuffer Pointer to the buffer into which the received item will
799 * be copied.
800 *
801 * @param xTicksToWait The maximum amount of time the task should block
802 * waiting for an item to receive should the queue be empty at the time
803 * of the call. xQueueReceive() will return immediately if xTicksToWait
804 * is zero and the queue is empty. The time is defined in tick periods so the
805 * constant portTICK_PERIOD_MS should be used to convert to real time if this is
806 * required.
807 *
808 * @return pdTRUE if an item was successfully received from the queue,
809 * otherwise pdFALSE.
810 *
811 * Example usage:
812 <pre>
813 struct AMessage
814 {
815 char ucMessageID;
816 char ucData[ 20 ];
817 } xMessage;
818
819 QueueHandle_t xQueue;
820
821 // Task to create a queue and post a value.
822 void vATask( void *pvParameters )
823 {
824 struct AMessage *pxMessage;
825
826 // Create a queue capable of containing 10 pointers to AMessage structures.
827 // These should be passed by pointer as they contain a lot of data.
828 xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
829 if( xQueue == 0 )
830 {
831 // Failed to create the queue.
832 }
833
834 // ...
835
836 // Send a pointer to a struct AMessage object. Don't block if the
837 // queue is already full.
838 pxMessage = & xMessage;
839 xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
840
841 // ... Rest of task code.
842 }
843
844 // Task to receive from the queue.
845 void vADifferentTask( void *pvParameters )
846 {
847 struct AMessage *pxRxedMessage;
848
849 if( xQueue != 0 )
850 {
851 // Receive a message on the created queue. Block for 10 ticks if a
852 // message is not immediately available.
853 if( xQueueReceive( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
854 {
855 // pcRxedMessage now points to the struct AMessage variable posted
856 // by vATask.
857 }
858 }
859
860 // ... Rest of task code.
861 }
862 </pre>
863 * \defgroup xQueueReceive xQueueReceive
864 * \ingroup QueueManagement
865 */
866BaseType_t xQueueReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
867
868/**
869 * queue. h
870 * <pre>UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue );</pre>
871 *
872 * Return the number of messages stored in a queue.
873 *
874 * @param xQueue A handle to the queue being queried.
875 *
876 * @return The number of messages available in the queue.
877 *
878 * \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
879 * \ingroup QueueManagement
880 */
881UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
882
883/**
884 * queue. h
885 * <pre>UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue );</pre>
886 *
887 * Return the number of free spaces available in a queue. This is equal to the
888 * number of items that can be sent to the queue before the queue becomes full
889 * if no items are removed.
890 *
891 * @param xQueue A handle to the queue being queried.
892 *
893 * @return The number of spaces available in the queue.
894 *
895 * \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
896 * \ingroup QueueManagement
897 */
898UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
899
900/**
901 * queue. h
902 * <pre>void vQueueDelete( QueueHandle_t xQueue );</pre>
903 *
904 * Delete a queue - freeing all the memory allocated for storing of items
905 * placed on the queue.
906 *
907 * @param xQueue A handle to the queue to be deleted.
908 *
909 * \defgroup vQueueDelete vQueueDelete
910 * \ingroup QueueManagement
911 */
912void vQueueDelete( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
913
914/**
915 * queue. h
916 * <pre>
917 BaseType_t xQueueSendToFrontFromISR(
918 QueueHandle_t xQueue,
919 const void *pvItemToQueue,
920 BaseType_t *pxHigherPriorityTaskWoken
921 );
922 </pre>
923 *
924 * This is a macro that calls xQueueGenericSendFromISR().
925 *
926 * Post an item to the front of a queue. It is safe to use this macro from
927 * within an interrupt service routine.
928 *
929 * Items are queued by copy not reference so it is preferable to only
930 * queue small items, especially when called from an ISR. In most cases
931 * it would be preferable to store a pointer to the item being queued.
932 *
933 * @param xQueue The handle to the queue on which the item is to be posted.
934 *
935 * @param pvItemToQueue A pointer to the item that is to be placed on the
936 * queue. The size of the items the queue will hold was defined when the
937 * queue was created, so this many bytes will be copied from pvItemToQueue
938 * into the queue storage area.
939 *
940 * @param pxHigherPriorityTaskWoken xQueueSendToFrontFromISR() will set
941 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
942 * to unblock, and the unblocked task has a priority higher than the currently
943 * running task. If xQueueSendToFromFromISR() sets this value to pdTRUE then
944 * a context switch should be requested before the interrupt is exited.
945 *
946 * @return pdTRUE if the data was successfully sent to the queue, otherwise
947 * errQUEUE_FULL.
948 *
949 * Example usage for buffered IO (where the ISR can obtain more than one value
950 * per call):
951 <pre>
952 void vBufferISR( void )
953 {
954 char cIn;
955 BaseType_t xHigherPrioritTaskWoken;
956
957 // We have not woken a task at the start of the ISR.
958 xHigherPriorityTaskWoken = pdFALSE;
959
960 // Loop until the buffer is empty.
961 do
962 {
963 // Obtain a byte from the buffer.
964 cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
965
966 // Post the byte.
967 xQueueSendToFrontFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
968
969 } while( portINPUT_BYTE( BUFFER_COUNT ) );
970
971 // Now the buffer is empty we can switch context if necessary.
972 if( xHigherPriorityTaskWoken )
973 {
974 taskYIELD ();
975 }
976 }
977 </pre>
978 *
979 * \defgroup xQueueSendFromISR xQueueSendFromISR
980 * \ingroup QueueManagement
981 */
982#define xQueueSendToFrontFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_FRONT )
983
984
985/**
986 * queue. h
987 * <pre>
988 BaseType_t xQueueSendToBackFromISR(
989 QueueHandle_t xQueue,
990 const void *pvItemToQueue,
991 BaseType_t *pxHigherPriorityTaskWoken
992 );
993 </pre>
994 *
995 * This is a macro that calls xQueueGenericSendFromISR().
996 *
997 * Post an item to the back of a queue. It is safe to use this macro from
998 * within an interrupt service routine.
999 *
1000 * Items are queued by copy not reference so it is preferable to only
1001 * queue small items, especially when called from an ISR. In most cases
1002 * it would be preferable to store a pointer to the item being queued.
1003 *
1004 * @param xQueue The handle to the queue on which the item is to be posted.
1005 *
1006 * @param pvItemToQueue A pointer to the item that is to be placed on the
1007 * queue. The size of the items the queue will hold was defined when the
1008 * queue was created, so this many bytes will be copied from pvItemToQueue
1009 * into the queue storage area.
1010 *
1011 * @param pxHigherPriorityTaskWoken xQueueSendToBackFromISR() will set
1012 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
1013 * to unblock, and the unblocked task has a priority higher than the currently
1014 * running task. If xQueueSendToBackFromISR() sets this value to pdTRUE then
1015 * a context switch should be requested before the interrupt is exited.
1016 *
1017 * @return pdTRUE if the data was successfully sent to the queue, otherwise
1018 * errQUEUE_FULL.
1019 *
1020 * Example usage for buffered IO (where the ISR can obtain more than one value
1021 * per call):
1022 <pre>
1023 void vBufferISR( void )
1024 {
1025 char cIn;
1026 BaseType_t xHigherPriorityTaskWoken;
1027
1028 // We have not woken a task at the start of the ISR.
1029 xHigherPriorityTaskWoken = pdFALSE;
1030
1031 // Loop until the buffer is empty.
1032 do
1033 {
1034 // Obtain a byte from the buffer.
1035 cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
1036
1037 // Post the byte.
1038 xQueueSendToBackFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
1039
1040 } while( portINPUT_BYTE( BUFFER_COUNT ) );
1041
1042 // Now the buffer is empty we can switch context if necessary.
1043 if( xHigherPriorityTaskWoken )
1044 {
1045 taskYIELD ();
1046 }
1047 }
1048 </pre>
1049 *
1050 * \defgroup xQueueSendFromISR xQueueSendFromISR
1051 * \ingroup QueueManagement
1052 */
1053#define xQueueSendToBackFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
1054
1055/**
1056 * queue. h
1057 * <pre>
1058 BaseType_t xQueueOverwriteFromISR(
1059 QueueHandle_t xQueue,
1060 const void * pvItemToQueue,
1061 BaseType_t *pxHigherPriorityTaskWoken
1062 );
1063 * </pre>
1064 *
1065 * A version of xQueueOverwrite() that can be used in an interrupt service
1066 * routine (ISR).
1067 *
1068 * Only for use with queues that can hold a single item - so the queue is either
1069 * empty or full.
1070 *
1071 * Post an item on a queue. If the queue is already full then overwrite the
1072 * value held in the queue. The item is queued by copy, not by reference.
1073 *
1074 * @param xQueue The handle to the queue on which the item is to be posted.
1075 *
1076 * @param pvItemToQueue A pointer to the item that is to be placed on the
1077 * queue. The size of the items the queue will hold was defined when the
1078 * queue was created, so this many bytes will be copied from pvItemToQueue
1079 * into the queue storage area.
1080 *
1081 * @param pxHigherPriorityTaskWoken xQueueOverwriteFromISR() will set
1082 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
1083 * to unblock, and the unblocked task has a priority higher than the currently
1084 * running task. If xQueueOverwriteFromISR() sets this value to pdTRUE then
1085 * a context switch should be requested before the interrupt is exited.
1086 *
1087 * @return xQueueOverwriteFromISR() is a macro that calls
1088 * xQueueGenericSendFromISR(), and therefore has the same return values as
1089 * xQueueSendToFrontFromISR(). However, pdPASS is the only value that can be
1090 * returned because xQueueOverwriteFromISR() will write to the queue even when
1091 * the queue is already full.
1092 *
1093 * Example usage:
1094 <pre>
1095
1096 QueueHandle_t xQueue;
1097
1098 void vFunction( void *pvParameters )
1099 {
1100 // Create a queue to hold one uint32_t value. It is strongly
1101 // recommended *not* to use xQueueOverwriteFromISR() on queues that can
1102 // contain more than one value, and doing so will trigger an assertion
1103 // if configASSERT() is defined.
1104 xQueue = xQueueCreate( 1, sizeof( uint32_t ) );
1105}
1106
1107void vAnInterruptHandler( void )
1108{
1109// xHigherPriorityTaskWoken must be set to pdFALSE before it is used.
1110BaseType_t xHigherPriorityTaskWoken = pdFALSE;
1111uint32_t ulVarToSend, ulValReceived;
1112
1113 // Write the value 10 to the queue using xQueueOverwriteFromISR().
1114 ulVarToSend = 10;
1115 xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );
1116
1117 // The queue is full, but calling xQueueOverwriteFromISR() again will still
1118 // pass because the value held in the queue will be overwritten with the
1119 // new value.
1120 ulVarToSend = 100;
1121 xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );
1122
1123 // Reading from the queue will now return 100.
1124
1125 // ...
1126
1127 if( xHigherPrioritytaskWoken == pdTRUE )
1128 {
1129 // Writing to the queue caused a task to unblock and the unblocked task
1130 // has a priority higher than or equal to the priority of the currently
1131 // executing task (the task this interrupt interrupted). Perform a context
1132 // switch so this interrupt returns directly to the unblocked task.
1133 portYIELD_FROM_ISR(); // or portEND_SWITCHING_ISR() depending on the port.
1134 }
1135}
1136 </pre>
1137 * \defgroup xQueueOverwriteFromISR xQueueOverwriteFromISR
1138 * \ingroup QueueManagement
1139 */
1140#define xQueueOverwriteFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueOVERWRITE )
1141
1142/**
1143 * queue. h
1144 * <pre>
1145 BaseType_t xQueueSendFromISR(
1146 QueueHandle_t xQueue,
1147 const void *pvItemToQueue,
1148 BaseType_t *pxHigherPriorityTaskWoken
1149 );
1150 </pre>
1151 *
1152 * This is a macro that calls xQueueGenericSendFromISR(). It is included
1153 * for backward compatibility with versions of FreeRTOS.org that did not
1154 * include the xQueueSendToBackFromISR() and xQueueSendToFrontFromISR()
1155 * macros.
1156 *
1157 * Post an item to the back of a queue. It is safe to use this function from
1158 * within an interrupt service routine.
1159 *
1160 * Items are queued by copy not reference so it is preferable to only
1161 * queue small items, especially when called from an ISR. In most cases
1162 * it would be preferable to store a pointer to the item being queued.
1163 *
1164 * @param xQueue The handle to the queue on which the item is to be posted.
1165 *
1166 * @param pvItemToQueue A pointer to the item that is to be placed on the
1167 * queue. The size of the items the queue will hold was defined when the
1168 * queue was created, so this many bytes will be copied from pvItemToQueue
1169 * into the queue storage area.
1170 *
1171 * @param pxHigherPriorityTaskWoken xQueueSendFromISR() will set
1172 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
1173 * to unblock, and the unblocked task has a priority higher than the currently
1174 * running task. If xQueueSendFromISR() sets this value to pdTRUE then
1175 * a context switch should be requested before the interrupt is exited.
1176 *
1177 * @return pdTRUE if the data was successfully sent to the queue, otherwise
1178 * errQUEUE_FULL.
1179 *
1180 * Example usage for buffered IO (where the ISR can obtain more than one value
1181 * per call):
1182 <pre>
1183 void vBufferISR( void )
1184 {
1185 char cIn;
1186 BaseType_t xHigherPriorityTaskWoken;
1187
1188 // We have not woken a task at the start of the ISR.
1189 xHigherPriorityTaskWoken = pdFALSE;
1190
1191 // Loop until the buffer is empty.
1192 do
1193 {
1194 // Obtain a byte from the buffer.
1195 cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
1196
1197 // Post the byte.
1198 xQueueSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
1199
1200 } while( portINPUT_BYTE( BUFFER_COUNT ) );
1201
1202 // Now the buffer is empty we can switch context if necessary.
1203 if( xHigherPriorityTaskWoken )
1204 {
1205 // Actual macro used here is port specific.
1206 portYIELD_FROM_ISR ();
1207 }
1208 }
1209 </pre>
1210 *
1211 * \defgroup xQueueSendFromISR xQueueSendFromISR
1212 * \ingroup QueueManagement
1213 */
1214#define xQueueSendFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
1215
1216/**
1217 * queue. h
1218 * <pre>
1219 BaseType_t xQueueGenericSendFromISR(
1220 QueueHandle_t xQueue,
1221 const void *pvItemToQueue,
1222 BaseType_t *pxHigherPriorityTaskWoken,
1223 BaseType_t xCopyPosition
1224 );
1225 </pre>
1226 *
1227 * It is preferred that the macros xQueueSendFromISR(),
1228 * xQueueSendToFrontFromISR() and xQueueSendToBackFromISR() be used in place
1229 * of calling this function directly. xQueueGiveFromISR() is an
1230 * equivalent for use by semaphores that don't actually copy any data.
1231 *
1232 * Post an item on a queue. It is safe to use this function from within an
1233 * interrupt service routine.
1234 *
1235 * Items are queued by copy not reference so it is preferable to only
1236 * queue small items, especially when called from an ISR. In most cases
1237 * it would be preferable to store a pointer to the item being queued.
1238 *
1239 * @param xQueue The handle to the queue on which the item is to be posted.
1240 *
1241 * @param pvItemToQueue A pointer to the item that is to be placed on the
1242 * queue. The size of the items the queue will hold was defined when the
1243 * queue was created, so this many bytes will be copied from pvItemToQueue
1244 * into the queue storage area.
1245 *
1246 * @param pxHigherPriorityTaskWoken xQueueGenericSendFromISR() will set
1247 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
1248 * to unblock, and the unblocked task has a priority higher than the currently
1249 * running task. If xQueueGenericSendFromISR() sets this value to pdTRUE then
1250 * a context switch should be requested before the interrupt is exited.
1251 *
1252 * @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
1253 * item at the back of the queue, or queueSEND_TO_FRONT to place the item
1254 * at the front of the queue (for high priority messages).
1255 *
1256 * @return pdTRUE if the data was successfully sent to the queue, otherwise
1257 * errQUEUE_FULL.
1258 *
1259 * Example usage for buffered IO (where the ISR can obtain more than one value
1260 * per call):
1261 <pre>
1262 void vBufferISR( void )
1263 {
1264 char cIn;
1265 BaseType_t xHigherPriorityTaskWokenByPost;
1266
1267 // We have not woken a task at the start of the ISR.
1268 xHigherPriorityTaskWokenByPost = pdFALSE;
1269
1270 // Loop until the buffer is empty.
1271 do
1272 {
1273 // Obtain a byte from the buffer.
1274 cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
1275
1276 // Post each byte.
1277 xQueueGenericSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWokenByPost, queueSEND_TO_BACK );
1278
1279 } while( portINPUT_BYTE( BUFFER_COUNT ) );
1280
1281 // Now the buffer is empty we can switch context if necessary. Note that the
1282 // name of the yield function required is port specific.
1283 if( xHigherPriorityTaskWokenByPost )
1284 {
1285 taskYIELD_YIELD_FROM_ISR();
1286 }
1287 }
1288 </pre>
1289 *
1290 * \defgroup xQueueSendFromISR xQueueSendFromISR
1291 * \ingroup QueueManagement
1292 */
1293BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue, const void * const pvItemToQueue, BaseType_t * const pxHigherPriorityTaskWoken, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
1294BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue, BaseType_t * const pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
1295
1296/**
1297 * queue. h
1298 * <pre>
1299 BaseType_t xQueueReceiveFromISR(
1300 QueueHandle_t xQueue,
1301 void *pvBuffer,
1302 BaseType_t *pxTaskWoken
1303 );
1304 * </pre>
1305 *
1306 * Receive an item from a queue. It is safe to use this function from within an
1307 * interrupt service routine.
1308 *
1309 * @param xQueue The handle to the queue from which the item is to be
1310 * received.
1311 *
1312 * @param pvBuffer Pointer to the buffer into which the received item will
1313 * be copied.
1314 *
1315 * @param pxTaskWoken A task may be blocked waiting for space to become
1316 * available on the queue. If xQueueReceiveFromISR causes such a task to
1317 * unblock *pxTaskWoken will get set to pdTRUE, otherwise *pxTaskWoken will
1318 * remain unchanged.
1319 *
1320 * @return pdTRUE if an item was successfully received from the queue,
1321 * otherwise pdFALSE.
1322 *
1323 * Example usage:
1324 <pre>
1325
1326 QueueHandle_t xQueue;
1327
1328 // Function to create a queue and post some values.
1329 void vAFunction( void *pvParameters )
1330 {
1331 char cValueToPost;
1332 const TickType_t xTicksToWait = ( TickType_t )0xff;
1333
1334 // Create a queue capable of containing 10 characters.
1335 xQueue = xQueueCreate( 10, sizeof( char ) );
1336 if( xQueue == 0 )
1337 {
1338 // Failed to create the queue.
1339 }
1340
1341 // ...
1342
1343 // Post some characters that will be used within an ISR. If the queue
1344 // is full then this task will block for xTicksToWait ticks.
1345 cValueToPost = 'a';
1346 xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
1347 cValueToPost = 'b';
1348 xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
1349
1350 // ... keep posting characters ... this task may block when the queue
1351 // becomes full.
1352
1353 cValueToPost = 'c';
1354 xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
1355 }
1356
1357 // ISR that outputs all the characters received on the queue.
1358 void vISR_Routine( void )
1359 {
1360 BaseType_t xTaskWokenByReceive = pdFALSE;
1361 char cRxedChar;
1362
1363 while( xQueueReceiveFromISR( xQueue, ( void * ) &cRxedChar, &xTaskWokenByReceive) )
1364 {
1365 // A character was received. Output the character now.
1366 vOutputCharacter( cRxedChar );
1367
1368 // If removing the character from the queue woke the task that was
1369 // posting onto the queue cTaskWokenByReceive will have been set to
1370 // pdTRUE. No matter how many times this loop iterates only one
1371 // task will be woken.
1372 }
1373
1374 if( cTaskWokenByPost != ( char ) pdFALSE;
1375 {
1376 taskYIELD ();
1377 }
1378 }
1379 </pre>
1380 * \defgroup xQueueReceiveFromISR xQueueReceiveFromISR
1381 * \ingroup QueueManagement
1382 */
1383BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue, void * const pvBuffer, BaseType_t * const pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
1384
1385/*
1386 * Utilities to query queues that are safe to use from an ISR. These utilities
1387 * should be used only from witin an ISR, or within a critical section.
1388 */
1389BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
1390BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
1391UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
1392
1393/*
1394 * The functions defined above are for passing data to and from tasks. The
1395 * functions below are the equivalents for passing data to and from
1396 * co-routines.
1397 *
1398 * These functions are called from the co-routine macro implementation and
1399 * should not be called directly from application code. Instead use the macro
1400 * wrappers defined within croutine.h.
1401 */
1402BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue, const void *pvItemToQueue, BaseType_t xCoRoutinePreviouslyWoken );
1403BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue, void *pvBuffer, BaseType_t *pxTaskWoken );
1404BaseType_t xQueueCRSend( QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait );
1405BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait );
1406
1407/*
1408 * For internal use only. Use xSemaphoreCreateMutex(),
1409 * xSemaphoreCreateCounting() or xSemaphoreGetMutexHolder() instead of calling
1410 * these functions directly.
1411 */
1412QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
1413QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType, StaticQueue_t *pxStaticQueue ) PRIVILEGED_FUNCTION;
1414QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount ) PRIVILEGED_FUNCTION;
1415QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount, StaticQueue_t *pxStaticQueue ) PRIVILEGED_FUNCTION;
1416BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
1417void* xQueueGetMutexHolder( QueueHandle_t xSemaphore ) PRIVILEGED_FUNCTION;
1418void* xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore ) PRIVILEGED_FUNCTION;
1419
1420/*
1421 * For internal use only. Use xSemaphoreTakeMutexRecursive() or
1422 * xSemaphoreGiveMutexRecursive() instead of calling these functions directly.
1423 */
1424BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
1425BaseType_t xQueueGiveMutexRecursive( QueueHandle_t pxMutex ) PRIVILEGED_FUNCTION;
1426
1427/*
1428 * Reset a queue back to its original empty state. The return value is now
1429 * obsolete and is always set to pdPASS.
1430 */
1431#define xQueueReset( xQueue ) xQueueGenericReset( xQueue, pdFALSE )
1432
1433/*
1434 * The registry is provided as a means for kernel aware debuggers to
1435 * locate queues, semaphores and mutexes. Call vQueueAddToRegistry() add
1436 * a queue, semaphore or mutex handle to the registry if you want the handle
1437 * to be available to a kernel aware debugger. If you are not using a kernel
1438 * aware debugger then this function can be ignored.
1439 *
1440 * configQUEUE_REGISTRY_SIZE defines the maximum number of handles the
1441 * registry can hold. configQUEUE_REGISTRY_SIZE must be greater than 0
1442 * within FreeRTOSConfig.h for the registry to be available. Its value
1443 * does not effect the number of queues, semaphores and mutexes that can be
1444 * created - just the number that the registry can hold.
1445 *
1446 * @param xQueue The handle of the queue being added to the registry. This
1447 * is the handle returned by a call to xQueueCreate(). Semaphore and mutex
1448 * handles can also be passed in here.
1449 *
1450 * @param pcName The name to be associated with the handle. This is the
1451 * name that the kernel aware debugger will display. The queue registry only
1452 * stores a pointer to the string - so the string must be persistent (global or
1453 * preferably in ROM/Flash), not on the stack.
1454 */
1455#if( configQUEUE_REGISTRY_SIZE > 0 )
1456 void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcName ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
1457#endif
1458
1459/*
1460 * The registry is provided as a means for kernel aware debuggers to
1461 * locate queues, semaphores and mutexes. Call vQueueAddToRegistry() add
1462 * a queue, semaphore or mutex handle to the registry if you want the handle
1463 * to be available to a kernel aware debugger, and vQueueUnregisterQueue() to
1464 * remove the queue, semaphore or mutex from the register. If you are not using
1465 * a kernel aware debugger then this function can be ignored.
1466 *
1467 * @param xQueue The handle of the queue being removed from the registry.
1468 */
1469#if( configQUEUE_REGISTRY_SIZE > 0 )
1470 void vQueueUnregisterQueue( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
1471#endif
1472
1473/*
1474 * The queue registry is provided as a means for kernel aware debuggers to
1475 * locate queues, semaphores and mutexes. Call pcQueueGetName() to look
1476 * up and return the name of a queue in the queue registry from the queue's
1477 * handle.
1478 *
1479 * @param xQueue The handle of the queue the name of which will be returned.
1480 * @return If the queue is in the registry then a pointer to the name of the
1481 * queue is returned. If the queue is not in the registry then NULL is
1482 * returned.
1483 */
1484#if( configQUEUE_REGISTRY_SIZE > 0 )
1485 const char *pcQueueGetName( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
1486#endif
1487
1488/*
1489 * Generic version of the function used to creaet a queue using dynamic memory
1490 * allocation. This is called by other functions and macros that create other
1491 * RTOS objects that use the queue structure as their base.
1492 */
1493#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
1494 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
1495#endif
1496
1497/*
1498 * Generic version of the function used to creaet a queue using dynamic memory
1499 * allocation. This is called by other functions and macros that create other
1500 * RTOS objects that use the queue structure as their base.
1501 */
1502#if( configSUPPORT_STATIC_ALLOCATION == 1 )
1503 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, StaticQueue_t *pxStaticQueue, const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
1504#endif
1505
1506/*
1507 * Queue sets provide a mechanism to allow a task to block (pend) on a read
1508 * operation from multiple queues or semaphores simultaneously.
1509 *
1510 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
1511 * function.
1512 *
1513 * A queue set must be explicitly created using a call to xQueueCreateSet()
1514 * before it can be used. Once created, standard FreeRTOS queues and semaphores
1515 * can be added to the set using calls to xQueueAddToSet().
1516 * xQueueSelectFromSet() is then used to determine which, if any, of the queues
1517 * or semaphores contained in the set is in a state where a queue read or
1518 * semaphore take operation would be successful.
1519 *
1520 * Note 1: See the documentation on http://wwwFreeRTOS.org/RTOS-queue-sets.html
1521 * for reasons why queue sets are very rarely needed in practice as there are
1522 * simpler methods of blocking on multiple objects.
1523 *
1524 * Note 2: Blocking on a queue set that contains a mutex will not cause the
1525 * mutex holder to inherit the priority of the blocked task.
1526 *
1527 * Note 3: An additional 4 bytes of RAM is required for each space in a every
1528 * queue added to a queue set. Therefore counting semaphores that have a high
1529 * maximum count value should not be added to a queue set.
1530 *
1531 * Note 4: A receive (in the case of a queue) or take (in the case of a
1532 * semaphore) operation must not be performed on a member of a queue set unless
1533 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
1534 *
1535 * @param uxEventQueueLength Queue sets store events that occur on
1536 * the queues and semaphores contained in the set. uxEventQueueLength specifies
1537 * the maximum number of events that can be queued at once. To be absolutely
1538 * certain that events are not lost uxEventQueueLength should be set to the
1539 * total sum of the length of the queues added to the set, where binary
1540 * semaphores and mutexes have a length of 1, and counting semaphores have a
1541 * length set by their maximum count value. Examples:
1542 * + If a queue set is to hold a queue of length 5, another queue of length 12,
1543 * and a binary semaphore, then uxEventQueueLength should be set to
1544 * (5 + 12 + 1), or 18.
1545 * + If a queue set is to hold three binary semaphores then uxEventQueueLength
1546 * should be set to (1 + 1 + 1 ), or 3.
1547 * + If a queue set is to hold a counting semaphore that has a maximum count of
1548 * 5, and a counting semaphore that has a maximum count of 3, then
1549 * uxEventQueueLength should be set to (5 + 3), or 8.
1550 *
1551 * @return If the queue set is created successfully then a handle to the created
1552 * queue set is returned. Otherwise NULL is returned.
1553 */
1554QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength ) PRIVILEGED_FUNCTION;
1555
1556/*
1557 * Adds a queue or semaphore to a queue set that was previously created by a
1558 * call to xQueueCreateSet().
1559 *
1560 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
1561 * function.
1562 *
1563 * Note 1: A receive (in the case of a queue) or take (in the case of a
1564 * semaphore) operation must not be performed on a member of a queue set unless
1565 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
1566 *
1567 * @param xQueueOrSemaphore The handle of the queue or semaphore being added to
1568 * the queue set (cast to an QueueSetMemberHandle_t type).
1569 *
1570 * @param xQueueSet The handle of the queue set to which the queue or semaphore
1571 * is being added.
1572 *
1573 * @return If the queue or semaphore was successfully added to the queue set
1574 * then pdPASS is returned. If the queue could not be successfully added to the
1575 * queue set because it is already a member of a different queue set then pdFAIL
1576 * is returned.
1577 */
1578BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;
1579
1580/*
1581 * Removes a queue or semaphore from a queue set. A queue or semaphore can only
1582 * be removed from a set if the queue or semaphore is empty.
1583 *
1584 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
1585 * function.
1586 *
1587 * @param xQueueOrSemaphore The handle of the queue or semaphore being removed
1588 * from the queue set (cast to an QueueSetMemberHandle_t type).
1589 *
1590 * @param xQueueSet The handle of the queue set in which the queue or semaphore
1591 * is included.
1592 *
1593 * @return If the queue or semaphore was successfully removed from the queue set
1594 * then pdPASS is returned. If the queue was not in the queue set, or the
1595 * queue (or semaphore) was not empty, then pdFAIL is returned.
1596 */
1597BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;
1598
1599/*
1600 * xQueueSelectFromSet() selects from the members of a queue set a queue or
1601 * semaphore that either contains data (in the case of a queue) or is available
1602 * to take (in the case of a semaphore). xQueueSelectFromSet() effectively
1603 * allows a task to block (pend) on a read operation on all the queues and
1604 * semaphores in a queue set simultaneously.
1605 *
1606 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
1607 * function.
1608 *
1609 * Note 1: See the documentation on http://wwwFreeRTOS.org/RTOS-queue-sets.html
1610 * for reasons why queue sets are very rarely needed in practice as there are
1611 * simpler methods of blocking on multiple objects.
1612 *
1613 * Note 2: Blocking on a queue set that contains a mutex will not cause the
1614 * mutex holder to inherit the priority of the blocked task.
1615 *
1616 * Note 3: A receive (in the case of a queue) or take (in the case of a
1617 * semaphore) operation must not be performed on a member of a queue set unless
1618 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
1619 *
1620 * @param xQueueSet The queue set on which the task will (potentially) block.
1621 *
1622 * @param xTicksToWait The maximum time, in ticks, that the calling task will
1623 * remain in the Blocked state (with other tasks executing) to wait for a member
1624 * of the queue set to be ready for a successful queue read or semaphore take
1625 * operation.
1626 *
1627 * @return xQueueSelectFromSet() will return the handle of a queue (cast to
1628 * a QueueSetMemberHandle_t type) contained in the queue set that contains data,
1629 * or the handle of a semaphore (cast to a QueueSetMemberHandle_t type) contained
1630 * in the queue set that is available, or NULL if no such queue or semaphore
1631 * exists before before the specified block time expires.
1632 */
1633QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet, const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
1634
1635/*
1636 * A version of xQueueSelectFromSet() that can be used from an ISR.
1637 */
1638QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;
1639
1640/* Not public API functions. */
1641void vQueueWaitForMessageRestricted( QueueHandle_t xQueue, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely ) PRIVILEGED_FUNCTION;
1642BaseType_t xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue ) PRIVILEGED_FUNCTION;
1643void vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber ) PRIVILEGED_FUNCTION;
1644UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
1645uint8_t ucQueueGetQueueType( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
1646
1647
1648#ifdef __cplusplus
1649}
1650#endif
1651
1652#endif /* QUEUE_H */
1653