blob: a15527940b4612d18332eee6ea5d133172cf3ae6 [file] [log] [blame]
Tobin C. Harding099c5c72019-05-15 10:29:10 +10001.. SPDX-License-Identifier: GPL-2.0
2
Tobin C. Harding90ac11a2019-05-15 10:29:09 +10003=========================================
4Overview of the Linux Virtual File System
5=========================================
Linus Torvalds1da177e2005-04-16 15:20:36 -07006
Tobin C. Hardinge66b0452019-05-15 10:29:11 +10007Original author: Richard Gooch <rgooch@atnf.csiro.au>
Linus Torvalds1da177e2005-04-16 15:20:36 -07008
Tobin C. Hardinge66b0452019-05-15 10:29:11 +10009- Copyright (C) 1999 Richard Gooch
10- Copyright (C) 2005 Pekka Enberg
Pekka J Enberg5ea626a2005-09-09 13:10:19 -070011
Linus Torvalds1da177e2005-04-16 15:20:36 -070012
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080013Introduction
14============
Linus Torvalds1da177e2005-04-16 15:20:36 -070015
Tobin C. Harding90caa782019-05-15 10:29:07 +100016The Virtual File System (also known as the Virtual Filesystem Switch) is
17the software layer in the kernel that provides the filesystem interface
18to userspace programs. It also provides an abstraction within the
19kernel which allows different filesystem implementations to coexist.
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080020
Tobin C. Harding90caa782019-05-15 10:29:07 +100021VFS system calls open(2), stat(2), read(2), write(2), chmod(2) and so on
22are called from a process context. Filesystem locking is described in
Mauro Carvalho Chehabec23eb52019-07-26 09:51:27 -030023the document Documentation/filesystems/locking.rst.
Linus Torvalds1da177e2005-04-16 15:20:36 -070024
25
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080026Directory Entry Cache (dcache)
27------------------------------
Linus Torvalds1da177e2005-04-16 15:20:36 -070028
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080029The VFS implements the open(2), stat(2), chmod(2), and similar system
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +100030calls. The pathname argument that is passed to them is used by the VFS
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080031to search through the directory entry cache (also known as the dentry
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +100032cache or dcache). This provides a very fast look-up mechanism to
33translate a pathname (filename) into a specific dentry. Dentries live
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080034in RAM and are never saved to disc: they exist only for performance.
35
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +100036The dentry cache is meant to be a view into your entire filespace. As
Tobin C. Harding90caa782019-05-15 10:29:07 +100037most computers cannot fit all dentries in the RAM at the same time, some
38bits of the cache are missing. In order to resolve your pathname into a
39dentry, the VFS may have to resort to creating dentries along the way,
40and then loading the inode. This is done by looking up the inode.
Linus Torvalds1da177e2005-04-16 15:20:36 -070041
Pekka J Enberg5ea626a2005-09-09 13:10:19 -070042
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080043The Inode Object
44----------------
Linus Torvalds1da177e2005-04-16 15:20:36 -070045
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +100046An individual dentry usually has a pointer to an inode. Inodes are
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080047filesystem objects such as regular files, directories, FIFOs and other
Tobin C. Harding90caa782019-05-15 10:29:07 +100048beasts. They live either on the disc (for block device filesystems) or
49in the memory (for pseudo filesystems). Inodes that live on the disc
50are copied into the memory when required and changes to the inode are
51written back to disc. A single inode can be pointed to by multiple
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080052dentries (hard links, for example, do this).
Linus Torvalds1da177e2005-04-16 15:20:36 -070053
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080054To look up an inode requires that the VFS calls the lookup() method of
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +100055the parent directory inode. This method is installed by the specific
Tobin C. Harding90caa782019-05-15 10:29:07 +100056filesystem implementation that the inode lives in. Once the VFS has the
57required dentry (and hence the inode), we can do all those boring things
58like open(2) the file, or stat(2) it to peek at the inode data. The
59stat(2) operation is fairly simple: once the VFS has the dentry, it
60peeks at the inode data and passes some of it back to userspace.
Linus Torvalds1da177e2005-04-16 15:20:36 -070061
Linus Torvalds1da177e2005-04-16 15:20:36 -070062
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080063The File Object
64---------------
Linus Torvalds1da177e2005-04-16 15:20:36 -070065
66Opening a file requires another operation: allocation of a file
Tobin C. Harding90caa782019-05-15 10:29:07 +100067structure (this is the kernel-side implementation of file descriptors).
68The freshly allocated file structure is initialized with a pointer to
69the dentry and a set of file operation member functions. These are
70taken from the inode data. The open() file method is then called so the
71specific filesystem implementation can do its work. You can see that
72this is another switch performed by the VFS. The file structure is
73placed into the file descriptor table for the process.
Linus Torvalds1da177e2005-04-16 15:20:36 -070074
75Reading, writing and closing files (and other assorted VFS operations)
76is done by using the userspace file descriptor to grab the appropriate
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080077file structure, and then calling the required file structure method to
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +100078do whatever is required. For as long as the file is open, it keeps the
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080079dentry in use, which in turn means that the VFS inode is still in use.
Linus Torvalds1da177e2005-04-16 15:20:36 -070080
Pekka J Enberg5ea626a2005-09-09 13:10:19 -070081
82Registering and Mounting a Filesystem
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080083=====================================
Linus Torvalds1da177e2005-04-16 15:20:36 -070084
Pekka Enbergcc7d1f82005-11-07 01:01:08 -080085To register and unregister a filesystem, use the following API
86functions:
Linus Torvalds1da177e2005-04-16 15:20:36 -070087
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +100088.. code-block:: c
Linus Torvalds1da177e2005-04-16 15:20:36 -070089
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +100090 #include <linux/fs.h>
91
92 extern int register_filesystem(struct file_system_type *);
93 extern int unregister_filesystem(struct file_system_type *);
Linus Torvalds1da177e2005-04-16 15:20:36 -070094
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +100095The passed struct file_system_type describes your filesystem. When a
Tobin C. Harding90caa782019-05-15 10:29:07 +100096request is made to mount a filesystem onto a directory in your
97namespace, the VFS will call the appropriate mount() method for the
98specific filesystem. New vfsmount referring to the tree returned by
99->mount() will be attached to the mountpoint, so that when pathname
100resolution reaches the mountpoint it will jump into the root of that
101vfsmount.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700102
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800103You can see all filesystems that are registered to the kernel in the
104file /proc/filesystems.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700105
106
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700107struct file_system_type
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800108-----------------------
Linus Torvalds1da177e2005-04-16 15:20:36 -0700109
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +1000110This describes the filesystem. As of kernel 2.6.39, the following
Linus Torvalds1da177e2005-04-16 15:20:36 -0700111members are defined:
112
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000113.. code-block:: c
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114
Liao Pingfang6a2195a2021-01-10 15:59:59 +0800115 struct file_system_type {
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000116 const char *name;
117 int fs_flags;
118 struct dentry *(*mount) (struct file_system_type *, int,
119 const char *, void *);
120 void (*kill_sb) (struct super_block *);
121 struct module *owner;
122 struct file_system_type * next;
123 struct list_head fs_supers;
124 struct lock_class_key s_lock_key;
125 struct lock_class_key s_umount_key;
126 };
127
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000128``name``
129 the name of the filesystem type, such as "ext2", "iso9660",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700130 "msdos" and so on
131
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000132``fs_flags``
133 various flags (i.e. FS_REQUIRES_DEV, FS_NO_DCACHE, etc.)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700134
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000135``mount``
136 the method to call when a new instance of this filesystem should
137 be mounted
Linus Torvalds1da177e2005-04-16 15:20:36 -0700138
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000139``kill_sb``
140 the method to call when an instance of this filesystem should be
141 shut down
Linus Torvalds1da177e2005-04-16 15:20:36 -0700142
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700143
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000144``owner``
145 for internal VFS use: you should initialize this to THIS_MODULE
146 in most cases.
147
148``next``
149 for internal VFS use: you should initialize this to NULL
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700150
Borislav Petkov0746aec2007-07-15 23:41:19 -0700151 s_lock_key, s_umount_key: lockdep-specific
152
Al Viro1a102ff2011-03-16 09:07:58 -0400153The mount() method has the following arguments:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700154
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000155``struct file_system_type *fs_type``
156 describes the filesystem, partly initialized by the specific
157 filesystem code
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700158
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000159``int flags``
160 mount flags
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700161
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000162``const char *dev_name``
163 the device name we are mounting.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700164
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000165``void *data``
166 arbitrary mount options, usually comes as an ASCII string (see
167 "Mount Options" section)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700168
Al Viro1a102ff2011-03-16 09:07:58 -0400169The mount() method must return the root dentry of the tree requested by
170caller. An active reference to its superblock must be grabbed and the
171superblock must be locked. On failure it should return ERR_PTR(error).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172
Tobin C. Harding90caa782019-05-15 10:29:07 +1000173The arguments match those of mount(2) and their interpretation depends
174on filesystem type. E.g. for block filesystems, dev_name is interpreted
175as block device name, that device is opened and if it contains a
176suitable filesystem image the method creates and initializes struct
177super_block accordingly, returning its root dentry to caller.
Al Viro1a102ff2011-03-16 09:07:58 -0400178
179->mount() may choose to return a subtree of existing filesystem - it
180doesn't have to create a new one. The main result from the caller's
Tobin C. Harding90caa782019-05-15 10:29:07 +1000181point of view is a reference to dentry at the root of (sub)tree to be
182attached; creation of new superblock is a common side effect.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183
Tobin C. Harding90caa782019-05-15 10:29:07 +1000184The most interesting member of the superblock structure that the mount()
185method fills in is the "s_op" field. This is a pointer to a "struct
186super_operations" which describes the next level of the filesystem
187implementation.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700188
Al Viro1a102ff2011-03-16 09:07:58 -0400189Usually, a filesystem uses one of the generic mount() implementations
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +1000190and provides a fill_super() callback instead. The generic variants are:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700191
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000192``mount_bdev``
193 mount a filesystem residing on a block device
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700194
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000195``mount_nodev``
196 mount a filesystem that is not backed by a device
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700197
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000198``mount_single``
199 mount a filesystem which shares the instance between all mounts
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700200
Al Viro1a102ff2011-03-16 09:07:58 -0400201A fill_super() callback implementation has the following arguments:
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700202
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000203``struct super_block *sb``
204 the superblock structure. The callback must initialize this
205 properly.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700206
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000207``void *data``
208 arbitrary mount options, usually comes as an ASCII string (see
209 "Mount Options" section)
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700210
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000211``int silent``
212 whether or not to be silent on error
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700213
214
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800215The Superblock Object
216=====================
217
218A superblock object represents a mounted filesystem.
219
220
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700221struct super_operations
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800222-----------------------
Linus Torvalds1da177e2005-04-16 15:20:36 -0700223
224This describes how the VFS can manipulate the superblock of your
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +1000225filesystem. As of kernel 2.6.22, the following members are defined:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000227.. code-block:: c
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700228
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000229 struct super_operations {
230 struct inode *(*alloc_inode)(struct super_block *sb);
231 void (*destroy_inode)(struct inode *);
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700232
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000233 void (*dirty_inode) (struct inode *, int flags);
234 int (*write_inode) (struct inode *, int);
235 void (*drop_inode) (struct inode *);
236 void (*delete_inode) (struct inode *);
237 void (*put_super) (struct super_block *);
238 int (*sync_fs)(struct super_block *sb, int wait);
239 int (*freeze_fs) (struct super_block *);
240 int (*unfreeze_fs) (struct super_block *);
241 int (*statfs) (struct dentry *, struct kstatfs *);
242 int (*remount_fs) (struct super_block *, int *, char *);
243 void (*clear_inode) (struct inode *);
244 void (*umount_begin) (struct super_block *);
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700245
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000246 int (*show_options)(struct seq_file *, struct dentry *);
247
248 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
249 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
250 int (*nr_cached_objects)(struct super_block *);
251 void (*free_cached_objects)(struct super_block *, int);
252 };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700253
254All methods are called without any locks being held, unless otherwise
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +1000255noted. This means that most methods can block safely. All methods are
Linus Torvalds1da177e2005-04-16 15:20:36 -0700256only called from a process context (i.e. not from an interrupt handler
257or bottom half).
258
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000259``alloc_inode``
260 this method is called by alloc_inode() to allocate memory for
261 struct inode and initialize it. If this function is not
Tobin C. Harding50c1f432019-05-15 10:29:05 +1000262 defined, a simple 'struct inode' is allocated. Normally
263 alloc_inode will be used to allocate a larger structure which
264 contains a 'struct inode' embedded within it.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700265
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000266``destroy_inode``
267 this method is called by destroy_inode() to release resources
268 allocated for struct inode. It is only required if
Tobin C. Harding50c1f432019-05-15 10:29:05 +1000269 ->alloc_inode was defined and simply undoes anything done by
NeilBrown341546f2006-03-25 03:07:56 -0800270 ->alloc_inode.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700271
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000272``dirty_inode``
Eric Biggersa38ed482021-01-12 11:02:48 -0800273 this method is called by the VFS when an inode is marked dirty.
274 This is specifically for the inode itself being marked dirty,
275 not its data. If the update needs to be persisted by fdatasync(),
276 then I_DIRTY_DATASYNC will be set in the flags argument.
Lukas Czerner0d942302022-08-25 12:06:57 +0200277 I_DIRTY_TIME will be set in the flags in case lazytime is enabled
278 and struct inode has times updated since the last ->dirty_inode
279 call.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000281``write_inode``
282 this method is called when the VFS needs to write an inode to
283 disc. The second parameter indicates whether the write should
284 be synchronous or not, not all filesystems check this flag.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000286``drop_inode``
287 called when the last access to the inode is dropped, with the
288 inode->i_lock spinlock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700290 This method should be either NULL (normal UNIX filesystem
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000291 semantics) or "generic_delete_inode" (for filesystems that do
292 not want to cache inodes - causing "delete_inode" to always be
Linus Torvalds1da177e2005-04-16 15:20:36 -0700293 called regardless of the value of i_nlink)
294
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000295 The "generic_delete_inode()" behavior is equivalent to the old
296 practice of using "force_delete" in the put_inode() case, but
297 does not have the races that the "force_delete()" approach had.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700298
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000299``delete_inode``
300 called when the VFS wants to delete an inode
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000302``put_super``
303 called when the VFS wishes to free the superblock
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +1000304 (i.e. unmount). This is called with the superblock lock held
Linus Torvalds1da177e2005-04-16 15:20:36 -0700305
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000306``sync_fs``
307 called when VFS is writing out all dirty data associated with a
308 superblock. The second parameter indicates whether the method
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +1000309 should wait until the write out has been completed. Optional.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700310
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000311``freeze_fs``
312 called when VFS is locking a filesystem and forcing it into a
313 consistent state. This method is currently used by the Logical
314 Volume Manager (LVM).
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700315
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000316``unfreeze_fs``
317 called when VFS is unlocking a filesystem and making it writable
Tobin C. Harding50c1f432019-05-15 10:29:05 +1000318 again.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700319
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000320``statfs``
321 called when the VFS needs to get filesystem statistics.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700322
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000323``remount_fs``
324 called when the filesystem is remounted. This is called with
325 the kernel lock held
Linus Torvalds1da177e2005-04-16 15:20:36 -0700326
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000327``clear_inode``
328 called then the VFS clears the inode. Optional
Linus Torvalds1da177e2005-04-16 15:20:36 -0700329
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000330``umount_begin``
331 called when the VFS is unmounting a filesystem.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700332
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000333``show_options``
334 called by the VFS to show mount options for /proc/<pid>/mounts.
335 (see "Mount Options" section)
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700336
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000337``quota_read``
338 called by the VFS to read from filesystem quota file.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700339
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000340``quota_write``
341 called by the VFS to write to filesystem quota file.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700342
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000343``nr_cached_objects``
344 called by the sb cache shrinking function for the filesystem to
345 return the number of freeable cached objects it contains.
Dave Chinner0e1fdaf2011-07-08 14:14:44 +1000346 Optional.
347
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000348``free_cache_objects``
349 called by the sb cache shrinking function for the filesystem to
350 scan the number of objects indicated to try to free them.
351 Optional, but any filesystem implementing this method needs to
352 also implement ->nr_cached_objects for it to be called
353 correctly.
Dave Chinner0e1fdaf2011-07-08 14:14:44 +1000354
355 We can't do anything with any errors that the filesystem might
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000356 encountered, hence the void return type. This will never be
357 called if the VM is trying to reclaim under GFP_NOFS conditions,
358 hence this method does not need to handle that situation itself.
Dave Chinner0e1fdaf2011-07-08 14:14:44 +1000359
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000360 Implementations must include conditional reschedule calls inside
361 any scanning loop that is done. This allows the VFS to
362 determine appropriate scan batch sizes without having to worry
363 about whether implementations will cause holdoff problems due to
364 large scan batch sizes.
Dave Chinner8ab47662011-07-08 14:14:45 +1000365
Tobin C. Harding90caa782019-05-15 10:29:07 +1000366Whoever sets up the inode is responsible for filling in the "i_op"
367field. This is a pointer to a "struct inode_operations" which describes
368the methods that can be performed on individual inodes.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700369
Tobin C. Hardinge04c83c2019-05-15 10:29:08 +1000370
Andreas Gruenbacher6c6ef9f2016-09-29 17:48:44 +0200371struct xattr_handlers
372---------------------
373
374On filesystems that support extended attributes (xattrs), the s_xattr
Tobin C. Harding90caa782019-05-15 10:29:07 +1000375superblock field points to a NULL-terminated array of xattr handlers.
376Extended attributes are name:value pairs.
Andreas Gruenbacher6c6ef9f2016-09-29 17:48:44 +0200377
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000378``name``
379 Indicates that the handler matches attributes with the specified
380 name (such as "system.posix_acl_access"); the prefix field must
381 be NULL.
Andreas Gruenbacher6c6ef9f2016-09-29 17:48:44 +0200382
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000383``prefix``
384 Indicates that the handler matches all attributes with the
385 specified name prefix (such as "user."); the name field must be
386 NULL.
Andreas Gruenbacher6c6ef9f2016-09-29 17:48:44 +0200387
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000388``list``
389 Determine if attributes matching this xattr handler should be
390 listed for a particular dentry. Used by some listxattr
391 implementations like generic_listxattr.
Andreas Gruenbacher6c6ef9f2016-09-29 17:48:44 +0200392
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000393``get``
394 Called by the VFS to get the value of a particular extended
395 attribute. This method is called by the getxattr(2) system
396 call.
Andreas Gruenbacher6c6ef9f2016-09-29 17:48:44 +0200397
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000398``set``
399 Called by the VFS to set the value of a particular extended
400 attribute. When the new value is NULL, called to remove a
Randy Dunlap8286de72020-07-03 14:43:25 -0700401 particular extended attribute. This method is called by the
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000402 setxattr(2) and removexattr(2) system calls.
Andreas Gruenbacher6c6ef9f2016-09-29 17:48:44 +0200403
Tobin C. Harding90caa782019-05-15 10:29:07 +1000404When none of the xattr handlers of a filesystem match the specified
405attribute name or when a filesystem doesn't support extended attributes,
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000406the various ``*xattr(2)`` system calls return -EOPNOTSUPP.
Andreas Gruenbacher6c6ef9f2016-09-29 17:48:44 +0200407
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800409The Inode Object
410================
411
412An inode object represents an object within the filesystem.
413
414
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700415struct inode_operations
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800416-----------------------
Linus Torvalds1da177e2005-04-16 15:20:36 -0700417
Tobin C. Harding90caa782019-05-15 10:29:07 +1000418This describes how the VFS can manipulate an inode in your filesystem.
419As of kernel 2.6.22, the following members are defined:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700420
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000421.. code-block:: c
422
423 struct inode_operations {
Christian Brauner549c7292021-01-21 14:19:43 +0100424 int (*create) (struct user_namespace *, struct inode *,struct dentry *, umode_t, bool);
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000425 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
426 int (*link) (struct dentry *,struct inode *,struct dentry *);
427 int (*unlink) (struct inode *,struct dentry *);
Christian Brauner549c7292021-01-21 14:19:43 +0100428 int (*symlink) (struct user_namespace *, struct inode *,struct dentry *,const char *);
429 int (*mkdir) (struct user_namespace *, struct inode *,struct dentry *,umode_t);
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000430 int (*rmdir) (struct inode *,struct dentry *);
Christian Brauner549c7292021-01-21 14:19:43 +0100431 int (*mknod) (struct user_namespace *, struct inode *,struct dentry *,umode_t,dev_t);
432 int (*rename) (struct user_namespace *, struct inode *, struct dentry *,
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000433 struct inode *, struct dentry *, unsigned int);
434 int (*readlink) (struct dentry *, char __user *,int);
435 const char *(*get_link) (struct dentry *, struct inode *,
436 struct delayed_call *);
Christian Brauner549c7292021-01-21 14:19:43 +0100437 int (*permission) (struct user_namespace *, struct inode *, int);
Miklos Szeredi0cad6242021-08-18 22:08:24 +0200438 struct posix_acl * (*get_acl)(struct inode *, int, bool);
Christian Brauner549c7292021-01-21 14:19:43 +0100439 int (*setattr) (struct user_namespace *, struct dentry *, struct iattr *);
440 int (*getattr) (struct user_namespace *, const struct path *, struct kstat *, u32, unsigned int);
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000441 ssize_t (*listxattr) (struct dentry *, char *, size_t);
442 void (*update_time)(struct inode *, struct timespec *, int);
443 int (*atomic_open)(struct inode *, struct dentry *, struct file *,
444 unsigned open_flag, umode_t create_mode);
Christian Brauner549c7292021-01-21 14:19:43 +0100445 int (*tmpfile) (struct user_namespace *, struct inode *, struct dentry *, umode_t);
446 int (*set_acl)(struct user_namespace *, struct inode *, struct posix_acl *, int);
Miklos Szeredi4c5b4792021-04-07 14:36:42 +0200447 int (*fileattr_set)(struct user_namespace *mnt_userns,
448 struct dentry *dentry, struct fileattr *fa);
449 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa);
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000450 };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700451
452Again, all methods are called without any locks being held, unless
453otherwise noted.
454
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000455``create``
456 called by the open(2) and creat(2) system calls. Only required
457 if you want to support regular files. The dentry you get should
458 not have an inode (i.e. it should be a negative dentry). Here
459 you will probably call d_instantiate() with the dentry and the
460 newly created inode
Linus Torvalds1da177e2005-04-16 15:20:36 -0700461
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000462``lookup``
463 called when the VFS needs to look up an inode in a parent
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +1000464 directory. The name to look for is found in the dentry. This
Linus Torvalds1da177e2005-04-16 15:20:36 -0700465 method must call d_add() to insert the found inode into the
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +1000466 dentry. The "i_count" field in the inode structure should be
467 incremented. If the named inode does not exist a NULL inode
Linus Torvalds1da177e2005-04-16 15:20:36 -0700468 should be inserted into the dentry (this is called a negative
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000469 dentry). Returning an error code from this routine must only be
470 done on a real error, otherwise creating inodes with system
Linus Torvalds1da177e2005-04-16 15:20:36 -0700471 calls like create(2), mknod(2), mkdir(2) and so on will fail.
472 If you wish to overload the dentry methods then you should
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000473 initialise the "d_dop" field in the dentry; this is a pointer to
474 a struct "dentry_operations". This method is called with the
475 directory inode semaphore held
Linus Torvalds1da177e2005-04-16 15:20:36 -0700476
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000477``link``
478 called by the link(2) system call. Only required if you want to
479 support hard links. You will probably need to call
Linus Torvalds1da177e2005-04-16 15:20:36 -0700480 d_instantiate() just as you would in the create() method
481
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000482``unlink``
483 called by the unlink(2) system call. Only required if you want
484 to support deleting inodes
Linus Torvalds1da177e2005-04-16 15:20:36 -0700485
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000486``symlink``
487 called by the symlink(2) system call. Only required if you want
488 to support symlinks. You will probably need to call
Linus Torvalds1da177e2005-04-16 15:20:36 -0700489 d_instantiate() just as you would in the create() method
490
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000491``mkdir``
492 called by the mkdir(2) system call. Only required if you want
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +1000493 to support creating subdirectories. You will probably need to
Linus Torvalds1da177e2005-04-16 15:20:36 -0700494 call d_instantiate() just as you would in the create() method
495
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000496``rmdir``
497 called by the rmdir(2) system call. Only required if you want
Linus Torvalds1da177e2005-04-16 15:20:36 -0700498 to support deleting subdirectories
499
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000500``mknod``
501 called by the mknod(2) system call to create a device (char,
502 block) inode or a named pipe (FIFO) or socket. Only required if
503 you want to support creating these types of inodes. You will
504 probably need to call d_instantiate() just as you would in the
505 create() method
Linus Torvalds1da177e2005-04-16 15:20:36 -0700506
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000507``rename``
508 called by the rename(2) system call to rename the object to have
509 the parent and name given by the second inode and dentry.
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800510
Miklos Szeredi18fc84d2016-09-27 11:03:58 +0200511 The filesystem must return -EINVAL for any unsupported or
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000512 unknown flags. Currently the following flags are implemented:
513 (1) RENAME_NOREPLACE: this flag indicates that if the target of
514 the rename exists the rename should fail with -EEXIST instead of
515 replacing the target. The VFS already checks for existence, so
516 for local filesystems the RENAME_NOREPLACE implementation is
517 equivalent to plain rename.
Miklos Szeredi520c8b12014-04-01 17:08:42 +0200518 (2) RENAME_EXCHANGE: exchange source and target. Both must
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000519 exist; this is checked by the VFS. Unlike plain rename, source
520 and target may be of different type.
Miklos Szeredi520c8b12014-04-01 17:08:42 +0200521
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000522``get_link``
523 called by the VFS to follow a symbolic link to the inode it
524 points to. Only required if you want to support symbolic links.
525 This method returns the symlink body to traverse (and possibly
526 resets the current position with nd_jump_link()). If the body
527 won't go away until the inode is gone, nothing else is needed;
528 if it needs to be otherwise pinned, arrange for its release by
529 having get_link(..., ..., done) do set_delayed_call(done,
530 destructor, argument). In that case destructor(argument) will
531 be called once VFS is done with the body you've returned. May
532 be called in RCU mode; that is indicated by NULL dentry
Al Virofceef392015-12-29 15:58:39 -0500533 argument. If request can't be handled without leaving RCU mode,
534 have it return ERR_PTR(-ECHILD).
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700535
Eric Biggersdcb2cb12019-04-11 16:16:28 -0700536 If the filesystem stores the symlink target in ->i_link, the
537 VFS may use it directly without calling ->get_link(); however,
538 ->get_link() must still be provided. ->i_link must not be
539 freed until after an RCU grace period. Writing to ->i_link
540 post-iget() time requires a 'release' memory barrier.
541
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000542``readlink``
543 this is now just an override for use by readlink(2) for the
Miklos Szeredi76fca902016-12-09 16:45:04 +0100544 cases when ->get_link uses nd_jump_link() or object is not in
545 fact a symlink. Normally filesystems should only implement
546 ->get_link for symlinks and readlink(2) will automatically use
547 that.
548
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000549``permission``
550 called by the VFS to check for access rights on a POSIX-like
Tobin C. Harding50c1f432019-05-15 10:29:05 +1000551 filesystem.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700552
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000553 May be called in rcu-walk mode (mask & MAY_NOT_BLOCK). If in
554 rcu-walk mode, the filesystem must check the permission without
555 blocking or storing to the inode.
Nick Pigginb74c79e2011-01-07 17:49:58 +1100556
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000557 If a situation is encountered that rcu-walk cannot handle,
558 return
Nick Pigginb74c79e2011-01-07 17:49:58 +1100559 -ECHILD and it will be called again in ref-walk mode.
560
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000561``setattr``
562 called by the VFS to set attributes for a file. This method is
563 called by chmod(2) and related system calls.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700564
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000565``getattr``
566 called by the VFS to get attributes of a file. This method is
567 called by stat(2) and related system calls.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700568
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000569``listxattr``
570 called by the VFS to list all extended attributes for a given
571 file. This method is called by the listxattr(2) system call.
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800572
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000573``update_time``
574 called by the VFS to update a specific time or the i_version of
575 an inode. If this is not defined the VFS will update the inode
576 itself and call mark_inode_dirty_sync.
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800577
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000578``atomic_open``
579 called on the last component of an open. Using this optional
580 method the filesystem can look up, possibly create and open the
581 file in one atomic operation. If it wants to leave actual
582 opening to the caller (e.g. if the file turned out to be a
583 symlink, device, or just something filesystem won't do atomic
584 open for), it may signal this by returning finish_no_open(file,
585 dentry). This method is only called if the last component is
586 negative or needs lookup. Cached positive dentries are still
587 handled by f_op->open(). If the file was created, FMODE_CREATED
588 flag should be set in file->f_mode. In case of O_EXCL the
589 method must only succeed if the file didn't exist and hence
590 FMODE_CREATED shall always be set on success.
Miklos Szeredid18e9002012-06-05 15:10:17 +0200591
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000592``tmpfile``
593 called in the end of O_TMPFILE open(). Optional, equivalent to
594 atomically creating, opening and unlinking a file in given
595 directory.
Al Viro48bde8d2013-07-03 16:19:23 +0400596
Miklos Szeredi4c5b4792021-04-07 14:36:42 +0200597``fileattr_get``
598 called on ioctl(FS_IOC_GETFLAGS) and ioctl(FS_IOC_FSGETXATTR) to
599 retrieve miscellaneous file flags and attributes. Also called
600 before the relevant SET operation to check what is being changed
601 (in this case with i_rwsem locked exclusive). If unset, then
602 fall back to f_op->ioctl().
603
604``fileattr_set``
605 called on ioctl(FS_IOC_SETFLAGS) and ioctl(FS_IOC_FSSETXATTR) to
606 change miscellaneous file flags and attributes. Callers hold
607 i_rwsem exclusive. If unset, then fall back to f_op->ioctl().
608
Tobin C. Hardinge04c83c2019-05-15 10:29:08 +1000609
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800610The Address Space Object
611========================
612
NeilBrown341546f2006-03-25 03:07:56 -0800613The address space object is used to group and manage pages in the page
Tobin C. Harding90caa782019-05-15 10:29:07 +1000614cache. It can be used to keep track of the pages in a file (or anything
615else) and also track the mapping of sections of the file into process
616address spaces.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700617
NeilBrown341546f2006-03-25 03:07:56 -0800618There are a number of distinct yet related services that an
Tobin C. Harding90caa782019-05-15 10:29:07 +1000619address-space can provide. These include communicating memory pressure,
620page lookup by address, and keeping track of pages tagged as Dirty or
621Writeback.
NeilBrown341546f2006-03-25 03:07:56 -0800622
NeilBrowna9e102b2006-03-25 03:08:29 -0800623The first can be used independently to the others. The VM can try to
Tobin C. Harding90caa782019-05-15 10:29:07 +1000624either write dirty pages in order to clean them, or release clean pages
625in order to reuse them. To do this it can call the ->writepage method
626on dirty pages, and ->releasepage on clean pages with PagePrivate set.
627Clean pages without PagePrivate and with no external references will be
628released without notice being given to the address_space.
NeilBrown341546f2006-03-25 03:07:56 -0800629
NeilBrowna9e102b2006-03-25 03:08:29 -0800630To achieve this functionality, pages need to be placed on an LRU with
Tobin C. Harding90caa782019-05-15 10:29:07 +1000631lru_cache_add and mark_page_active needs to be called whenever the page
632is used.
NeilBrown341546f2006-03-25 03:07:56 -0800633
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +1000634Pages are normally kept in a radix tree index by ->index. This tree
Tobin C. Harding90caa782019-05-15 10:29:07 +1000635maintains information about the PG_Dirty and PG_Writeback status of each
636page, so that pages with either of these flags can be found quickly.
NeilBrown341546f2006-03-25 03:07:56 -0800637
638The Dirty tag is primarily used by mpage_writepages - the default
639->writepages method. It uses the tag to find dirty pages to call
640->writepage on. If mpage_writepages is not used (i.e. the address
Tobin C. Harding90caa782019-05-15 10:29:07 +1000641provides its own ->writepages) , the PAGECACHE_TAG_DIRTY tag is almost
642unused. write_inode_now and sync_inode do use it (through
NeilBrown341546f2006-03-25 03:07:56 -0800643__sync_single_inode) to check if ->writepages has been successful in
644writing out the whole address_space.
645
Tobin C. Harding90caa782019-05-15 10:29:07 +1000646The Writeback tag is used by filemap*wait* and sync_page* functions, via
647filemap_fdatawait_range, to wait for all writeback to complete.
NeilBrown341546f2006-03-25 03:07:56 -0800648
649An address_space handler may attach extra information to a page,
650typically using the 'private' field in the 'struct page'. If such
651information is attached, the PG_Private flag should be set. This will
NeilBrowna9e102b2006-03-25 03:08:29 -0800652cause various VM routines to make extra calls into the address_space
NeilBrown341546f2006-03-25 03:07:56 -0800653handler to deal with that data.
654
655An address space acts as an intermediate between storage and
656application. Data is read into the address space a whole page at a
Tobin C. Harding90caa782019-05-15 10:29:07 +1000657time, and provided to the application either by copying of the page, or
658by memory-mapping the page. Data is written into the address space by
659the application, and then written-back to storage typically in whole
660pages, however the address_space has finer control of write sizes.
NeilBrown341546f2006-03-25 03:07:56 -0800661
662The read process essentially only requires 'readpage'. The write
Nick Piggin4e02ed42008-10-29 14:00:55 -0700663process is more complicated and uses write_begin/write_end or
Tobin C. Harding90caa782019-05-15 10:29:07 +1000664set_page_dirty to write data into the address_space, and writepage and
665writepages to writeback data to storage.
NeilBrown341546f2006-03-25 03:07:56 -0800666
667Adding and removing pages to/from an address_space is protected by the
668inode's i_mutex.
669
670When data is written to a page, the PG_Dirty flag should be set. It
671typically remains set until writepage asks for it to be written. This
Tobin C. Harding90caa782019-05-15 10:29:07 +1000672should clear PG_Dirty and set PG_Writeback. It can be actually written
673at any point after PG_Dirty is clear. Once it is known to be safe,
674PG_Writeback is cleared.
NeilBrown341546f2006-03-25 03:07:56 -0800675
Jeff Laytonacbf3c32017-07-06 07:02:27 -0400676Writeback makes use of a writeback_control structure to direct the
Randy Dunlap8286de72020-07-03 14:43:25 -0700677operations. This gives the writepage and writepages operations some
Jeff Laytonacbf3c32017-07-06 07:02:27 -0400678information about the nature of and reason for the writeback request,
679and the constraints under which it is being done. It is also used to
680return information back to the caller about the result of a writepage or
681writepages request.
682
Tobin C. Hardinge04c83c2019-05-15 10:29:08 +1000683
Jeff Laytonacbf3c32017-07-06 07:02:27 -0400684Handling errors during writeback
685--------------------------------
Tobin C. Hardinge04c83c2019-05-15 10:29:08 +1000686
Jeff Laytonacbf3c32017-07-06 07:02:27 -0400687Most applications that do buffered I/O will periodically call a file
688synchronization call (fsync, fdatasync, msync or sync_file_range) to
689ensure that data written has made it to the backing store. When there
690is an error during writeback, they expect that error to be reported when
691a file sync request is made. After an error has been reported on one
692request, subsequent requests on the same file descriptor should return
6930, unless further writeback errors have occurred since the previous file
694syncronization.
695
696Ideally, the kernel would report errors only on file descriptions on
697which writes were done that subsequently failed to be written back. The
698generic pagecache infrastructure does not track the file descriptions
699that have dirtied each individual page however, so determining which
700file descriptors should get back an error is not possible.
701
702Instead, the generic writeback error tracking infrastructure in the
703kernel settles for reporting errors to fsync on all file descriptions
704that were open at the time that the error occurred. In a situation with
Tobin C. Harding90caa782019-05-15 10:29:07 +1000705multiple writers, all of them will get back an error on a subsequent
706fsync, even if all of the writes done through that particular file
707descriptor succeeded (or even if there were no writes on that file
708descriptor at all).
Jeff Laytonacbf3c32017-07-06 07:02:27 -0400709
710Filesystems that wish to use this infrastructure should call
711mapping_set_error to record the error in the address_space when it
712occurs. Then, after writing back data from the pagecache in their
713file->fsync operation, they should call file_check_and_advance_wb_err to
714ensure that the struct file's error cursor has advanced to the correct
715point in the stream of errors emitted by the backing device(s).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700716
Tobin C. Hardinge04c83c2019-05-15 10:29:08 +1000717
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700718struct address_space_operations
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800719-------------------------------
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700720
Tobin C. Harding90caa782019-05-15 10:29:07 +1000721This describes how the VFS can manipulate mapping of a file to page
722cache in your filesystem. The following members are defined:
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700723
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000724.. code-block:: c
725
726 struct address_space_operations {
727 int (*writepage)(struct page *page, struct writeback_control *wbc);
728 int (*readpage)(struct file *, struct page *);
729 int (*writepages)(struct address_space *, struct writeback_control *);
730 int (*set_page_dirty)(struct page *page);
Matthew Wilcox (Oracle)8151b4c2020-06-01 21:46:44 -0700731 void (*readahead)(struct readahead_control *);
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000732 int (*readpages)(struct file *filp, struct address_space *mapping,
733 struct list_head *pages, unsigned nr_pages);
734 int (*write_begin)(struct file *, struct address_space *mapping,
735 loff_t pos, unsigned len, unsigned flags,
Nick Pigginafddba42007-10-16 01:25:01 -0700736 struct page **pagep, void **fsdata);
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000737 int (*write_end)(struct file *, struct address_space *mapping,
738 loff_t pos, unsigned len, unsigned copied,
739 struct page *page, void *fsdata);
740 sector_t (*bmap)(struct address_space *, sector_t);
741 void (*invalidatepage) (struct page *, unsigned int, unsigned int);
742 int (*releasepage) (struct page *, int);
743 void (*freepage)(struct page *);
744 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
745 /* isolate a page for migration */
746 bool (*isolate_page) (struct page *, isolate_mode_t);
747 /* migrate the contents of a page to the specified target */
748 int (*migratepage) (struct page *, struct page *);
749 /* put migration-failed page back to right list */
750 void (*putback_page) (struct page *);
751 int (*launder_page) (struct page *);
Minchan Kimbda807d2016-07-26 15:23:05 -0700752
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000753 int (*is_partially_uptodate) (struct page *, unsigned long,
754 unsigned long);
755 void (*is_dirty_writeback) (struct page *, bool *, bool *);
756 int (*error_remove_page) (struct mapping *mapping, struct page *page);
757 int (*swap_activate)(struct file *);
758 int (*swap_deactivate)(struct file *);
759 };
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700760
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000761``writepage``
762 called by the VM to write a dirty page to backing store. This
763 may happen for data integrity reasons (i.e. 'sync'), or to free
764 up memory (flush). The difference can be seen in
765 wbc->sync_mode. The PG_Dirty flag has been cleared and
766 PageLocked is true. writepage should start writeout, should set
767 PG_Writeback, and should make sure the page is unlocked, either
768 synchronously or asynchronously when the write operation
769 completes.
NeilBrown341546f2006-03-25 03:07:56 -0800770
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000771 If wbc->sync_mode is WB_SYNC_NONE, ->writepage doesn't have to
772 try too hard if there are problems, and may choose to write out
773 other pages from the mapping if that is easier (e.g. due to
774 internal dependencies). If it chooses not to start writeout, it
775 should return AOP_WRITEPAGE_ACTIVATE so that the VM will not
776 keep calling ->writepage on that page.
NeilBrown341546f2006-03-25 03:07:56 -0800777
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000778 See the file "Locking" for more details.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700779
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000780``readpage``
781 called by the VM to read a page from backing store. The page
782 will be Locked when readpage is called, and should be unlocked
783 and marked uptodate once the read completes. If ->readpage
784 discovers that it needs to unlock the page for some reason, it
785 can do so, and then return AOP_TRUNCATED_PAGE. In this case,
786 the page will be relocated, relocked and if that all succeeds,
787 ->readpage will be called again.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700788
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000789``writepages``
790 called by the VM to write out pages associated with the
Julia Lawalle9b2f152020-07-26 21:22:21 +0200791 address_space object. If wbc->sync_mode is WB_SYNC_ALL, then
Tobin C. Harding50c1f432019-05-15 10:29:05 +1000792 the writeback_control will specify a range of pages that must be
Julia Lawalle9b2f152020-07-26 21:22:21 +0200793 written out. If it is WB_SYNC_NONE, then a nr_to_write is
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000794 given and that many pages should be written if possible. If no
795 ->writepages is given, then mpage_writepages is used instead.
796 This will choose pages from the address space that are tagged as
797 DIRTY and will pass them to ->writepage.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700798
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000799``set_page_dirty``
800 called by the VM to set a page dirty. This is particularly
801 needed if an address space attaches private data to a page, and
802 that data needs to be updated when a page is dirtied. This is
803 called, for example, when a memory mapped page gets modified.
NeilBrown341546f2006-03-25 03:07:56 -0800804 If defined, it should set the PageDirty flag, and the
Tobin C. Harding1b44ae62019-05-15 10:29:12 +1000805 PAGECACHE_TAG_DIRTY tag in the radix tree.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700806
Matthew Wilcox (Oracle)8151b4c2020-06-01 21:46:44 -0700807``readahead``
808 Called by the VM to read pages associated with the address_space
809 object. The pages are consecutive in the page cache and are
810 locked. The implementation should decrement the page refcount
811 after starting I/O on each page. Usually the page will be
812 unlocked by the I/O completion handler. If the filesystem decides
813 to stop attempting I/O before reaching the end of the readahead
814 window, it can simply return. The caller will decrement the page
815 refcount and unlock the remaining pages for you. Set PageUptodate
816 if the I/O completes successfully. Setting PageError on any page
817 will be ignored; simply unlock the page if an I/O error occurs.
818
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000819``readpages``
820 called by the VM to read pages associated with the address_space
821 object. This is essentially just a vector version of readpage.
822 Instead of just one page, several pages are requested.
NeilBrowna9e102b2006-03-25 03:08:29 -0800823 readpages is only used for read-ahead, so read errors are
Tobin C. Harding50c1f432019-05-15 10:29:05 +1000824 ignored. If anything goes wrong, feel free to give up.
Matthew Wilcox (Oracle)8151b4c2020-06-01 21:46:44 -0700825 This interface is deprecated and will be removed by the end of
826 2020; implement readahead instead.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700827
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000828``write_begin``
829 Called by the generic buffered write code to ask the filesystem
830 to prepare to write len bytes at the given offset in the file.
831 The address_space should check that the write will be able to
832 complete, by allocating space if necessary and doing any other
833 internal housekeeping. If the write will update parts of any
834 basic-blocks on storage, then those blocks should be pre-read
835 (if they haven't been read already) so that the updated blocks
836 can be written out properly.
Nick Pigginafddba42007-10-16 01:25:01 -0700837
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000838 The filesystem must return the locked pagecache page for the
839 specified offset, in ``*pagep``, for the caller to write into.
Nick Pigginafddba42007-10-16 01:25:01 -0700840
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000841 It must be able to cope with short writes (where the length
842 passed to write_begin is greater than the number of bytes copied
843 into the page).
Nick Piggin4e02ed42008-10-29 14:00:55 -0700844
Nick Pigginafddba42007-10-16 01:25:01 -0700845 flags is a field for AOP_FLAG_xxx flags, described in
846 include/linux/fs.h.
847
Tobin C. Harding1b44ae62019-05-15 10:29:12 +1000848 A void * may be returned in fsdata, which then gets passed into
849 write_end.
Nick Pigginafddba42007-10-16 01:25:01 -0700850
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000851 Returns 0 on success; < 0 on failure (which is the error code),
852 in which case write_end is not called.
Nick Pigginafddba42007-10-16 01:25:01 -0700853
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000854``write_end``
855 After a successful write_begin, and data copy, write_end must be
856 called. len is the original len passed to write_begin, and
857 copied is the amount that was able to be copied.
Nick Pigginafddba42007-10-16 01:25:01 -0700858
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000859 The filesystem must take care of unlocking the page and
860 releasing it refcount, and updating i_size.
Nick Pigginafddba42007-10-16 01:25:01 -0700861
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000862 Returns < 0 on failure, otherwise the number of bytes (<=
863 'copied') that were able to be copied into pagecache.
Nick Pigginafddba42007-10-16 01:25:01 -0700864
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000865``bmap``
866 called by the VFS to map a logical block offset within object to
867 physical block number. This method is used by the FIBMAP ioctl
868 and for working with swap-files. To be able to swap to a file,
869 the file must have a stable mapping to a block device. The swap
870 system does not go through the filesystem but instead uses bmap
871 to find out where the blocks in the file are and uses those
872 addresses directly.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700873
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000874``invalidatepage``
875 If a page has PagePrivate set, then invalidatepage will be
876 called when part or all of the page is to be removed from the
877 address space. This generally corresponds to either a
878 truncation, punch hole or a complete invalidation of the address
Lukas Czernerd47992f2013-05-21 23:17:23 -0400879 space (in the latter case 'offset' will always be 0 and 'length'
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +1000880 will be PAGE_SIZE). Any private data associated with the page
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000881 should be updated to reflect this truncation. If offset is 0
882 and length is PAGE_SIZE, then the private data should be
883 released, because the page must be able to be completely
884 discarded. This may be done by calling the ->releasepage
885 function, but in this case the release MUST succeed.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700886
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000887``releasepage``
888 releasepage is called on PagePrivate pages to indicate that the
889 page should be freed if possible. ->releasepage should remove
890 any private data from the page and clear the PagePrivate flag.
891 If releasepage() fails for some reason, it must indicate failure
892 with a 0 return value. releasepage() is used in two distinct
893 though related cases. The first is when the VM finds a clean
894 page with no active users and wants to make it a free page. If
895 ->releasepage succeeds, the page will be removed from the
896 address_space and become free.
NeilBrown341546f2006-03-25 03:07:56 -0800897
Shaun Zinckbc5b1d52007-10-20 02:35:36 +0200898 The second case is when a request has been made to invalidate
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000899 some or all pages in an address_space. This can happen through
900 the fadvise(POSIX_FADV_DONTNEED) system call or by the
901 filesystem explicitly requesting it as nfs and 9fs do (when they
902 believe the cache may be out of date with storage) by calling
903 invalidate_inode_pages2(). If the filesystem makes such a call,
904 and needs to be certain that all pages are invalidated, then its
905 releasepage will need to ensure this. Possibly it can clear the
906 PageUptodate bit if it cannot free private data yet.
NeilBrown341546f2006-03-25 03:07:56 -0800907
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000908``freepage``
909 freepage is called once the page is no longer visible in the
910 page cache in order to allow the cleanup of any private data.
911 Since it may be called by the memory reclaimer, it should not
912 assume that the original address_space mapping still exists, and
913 it should not block.
Linus Torvalds6072d132010-12-01 13:35:19 -0500914
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000915``direct_IO``
916 called by the generic read/write routines to perform direct_IO -
917 that is IO requests which bypass the page cache and transfer
918 data directly between the storage and the application's address
919 space.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700920
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000921``isolate_page``
922 Called by the VM when isolating a movable non-lru page. If page
923 is successfully isolated, VM marks the page as PG_isolated via
924 __SetPageIsolated.
Minchan Kimbda807d2016-07-26 15:23:05 -0700925
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000926``migrate_page``
927 This is used to compact the physical memory usage. If the VM
928 wants to relocate a page (maybe off a memory card that is
929 signalling imminent failure) it will pass a new page and an old
930 page to this function. migrate_page should transfer any private
931 data across and update any references that it has to the page.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700932
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000933``putback_page``
934 Called by the VM when isolated page's migration fails.
Minchan Kimbda807d2016-07-26 15:23:05 -0700935
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000936``launder_page``
937 Called before freeing a page - it writes back the dirty page.
938 To prevent redirtying the page, it is kept locked during the
939 whole operation.
Borislav Petkov422b14c2007-07-15 23:41:43 -0700940
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000941``is_partially_uptodate``
942 Called by the VM when reading a file through the pagecache when
943 the underlying blocksize != pagesize. If the required block is
944 up to date then the read can complete without needing the IO to
945 bring the whole page up to date.
Mel Gorman26c0c5b2013-07-03 15:04:45 -0700946
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000947``is_dirty_writeback``
948 Called by the VM when attempting to reclaim a page. The VM uses
949 dirty and writeback information to determine if it needs to
950 stall to allow flushers a chance to complete some IO.
951 Ordinarily it can use PageDirty and PageWriteback but some
952 filesystems have more complex state (unstable pages in NFS
953 prevent reclaim) or do not set those flags due to locking
954 problems. This callback allows a filesystem to indicate to the
955 VM if a page should be treated as dirty or writeback for the
956 purposes of stalling.
Mel Gorman543cc112013-07-03 15:04:46 -0700957
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000958``error_remove_page``
959 normally set to generic_error_remove_page if truncation is ok
960 for this address space. Used for memory failure handling.
Andi Kleen25718732009-09-16 11:50:13 +0200961 Setting this implies you deal with pages going away under you,
962 unless you have them locked or reference counts increased.
963
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000964``swap_activate``
965 Called when swapon is used on a file to allocate space if
966 necessary and pin the block lookup information in memory. A
967 return value of zero indicates success, in which case this file
968 can be used to back swapspace.
Mel Gorman62c230b2012-07-31 16:44:55 -0700969
Tobin C. Hardingee5dc042019-06-04 10:26:56 +1000970``swap_deactivate``
971 Called during swapoff on files where swap_activate was
972 successful.
Mel Gorman62c230b2012-07-31 16:44:55 -0700973
Andi Kleen25718732009-09-16 11:50:13 +0200974
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800975The File Object
976===============
977
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +1000978A file object represents a file opened by a process. This is also known
Jeff Laytonacbf3c32017-07-06 07:02:27 -0400979as an "open file description" in POSIX parlance.
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800980
981
Pekka J Enberg5ea626a2005-09-09 13:10:19 -0700982struct file_operations
Pekka Enbergcc7d1f82005-11-07 01:01:08 -0800983----------------------
Linus Torvalds1da177e2005-04-16 15:20:36 -0700984
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +1000985This describes how the VFS can manipulate an open file. As of kernel
Amir Goldstein17ef4452018-08-27 15:56:01 +03009864.18, the following members are defined:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700987
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +1000988.. code-block:: c
989
990 struct file_operations {
991 struct module *owner;
992 loff_t (*llseek) (struct file *, loff_t, int);
993 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
994 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
995 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
996 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
997 int (*iopoll)(struct kiocb *kiocb, bool spin);
998 int (*iterate) (struct file *, struct dir_context *);
999 int (*iterate_shared) (struct file *, struct dir_context *);
1000 __poll_t (*poll) (struct file *, struct poll_table_struct *);
1001 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
1002 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
1003 int (*mmap) (struct file *, struct vm_area_struct *);
1004 int (*open) (struct inode *, struct file *);
1005 int (*flush) (struct file *, fl_owner_t id);
1006 int (*release) (struct inode *, struct file *);
1007 int (*fsync) (struct file *, loff_t, loff_t, int datasync);
1008 int (*fasync) (int, struct file *, int);
1009 int (*lock) (struct file *, int, struct file_lock *);
1010 ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
1011 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1012 int (*check_flags)(int);
1013 int (*flock) (struct file *, int, struct file_lock *);
1014 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
1015 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
1016 int (*setlease)(struct file *, long, struct file_lock **, void **);
1017 long (*fallocate)(struct file *file, int mode, loff_t offset,
1018 loff_t len);
1019 void (*show_fdinfo)(struct seq_file *m, struct file *f);
1020 #ifndef CONFIG_MMU
1021 unsigned (*mmap_capabilities)(struct file *);
1022 #endif
1023 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, loff_t, size_t, unsigned int);
1024 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
1025 struct file *file_out, loff_t pos_out,
1026 loff_t len, unsigned int remap_flags);
1027 int (*fadvise)(struct file *, loff_t, loff_t, int);
1028 };
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029
1030Again, all methods are called without any locks being held, unless
1031otherwise noted.
1032
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001033``llseek``
1034 called when the VFS needs to move the file position index
Linus Torvalds1da177e2005-04-16 15:20:36 -07001035
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001036``read``
1037 called by read(2) and related system calls
Linus Torvalds1da177e2005-04-16 15:20:36 -07001038
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001039``read_iter``
1040 possibly asynchronous read with iov_iter as destination
Pekka J Enberg5ea626a2005-09-09 13:10:19 -07001041
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001042``write``
1043 called by write(2) and related system calls
Linus Torvalds1da177e2005-04-16 15:20:36 -07001044
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001045``write_iter``
1046 possibly asynchronous write with iov_iter as source
Pekka J Enberg5ea626a2005-09-09 13:10:19 -07001047
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001048``iopoll``
1049 called when aio wants to poll for completions on HIPRI iocbs
Christoph Hellwigfb7e1602018-11-22 16:37:38 +01001050
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001051``iterate``
1052 called when the VFS needs to read the directory contents
Linus Torvalds1da177e2005-04-16 15:20:36 -07001053
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001054``iterate_shared``
1055 called when the VFS needs to read the directory contents when
1056 filesystem supports concurrent dir iterators
Amir Goldstein17ef4452018-08-27 15:56:01 +03001057
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001058``poll``
1059 called by the VFS when a process wants to check if there is
Linus Torvalds1da177e2005-04-16 15:20:36 -07001060 activity on this file and (optionally) go to sleep until there
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +10001061 is activity. Called by the select(2) and poll(2) system calls
Linus Torvalds1da177e2005-04-16 15:20:36 -07001062
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001063``unlocked_ioctl``
1064 called by the ioctl(2) system call.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -07001065
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001066``compat_ioctl``
1067 called by the ioctl(2) system call when 32 bit system calls are
1068 used on 64 bit kernels.
Pekka J Enberg5ea626a2005-09-09 13:10:19 -07001069
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001070``mmap``
1071 called by the mmap(2) system call
Linus Torvalds1da177e2005-04-16 15:20:36 -07001072
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001073``open``
1074 called by the VFS when an inode should be opened. When the VFS
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +10001075 opens a file, it creates a new "struct file". It then calls the
1076 open method for the newly allocated file structure. You might
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001077 think that the open method really belongs in "struct
1078 inode_operations", and you may be right. I think it's done the
1079 way it is because it makes filesystems simpler to implement.
1080 The open() method is a good place to initialize the
Pekka J Enberg5ea626a2005-09-09 13:10:19 -07001081 "private_data" member in the file structure if you want to point
1082 to a device structure
1083
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001084``flush``
1085 called by the close(2) system call to flush a file
Linus Torvalds1da177e2005-04-16 15:20:36 -07001086
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001087``release``
1088 called when the last reference to an open file is closed
Linus Torvalds1da177e2005-04-16 15:20:36 -07001089
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001090``fsync``
1091 called by the fsync(2) system call. Also see the section above
1092 entitled "Handling errors during writeback".
Linus Torvalds1da177e2005-04-16 15:20:36 -07001093
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001094``fasync``
1095 called by the fcntl(2) system call when asynchronous
Linus Torvalds1da177e2005-04-16 15:20:36 -07001096 (non-blocking) mode is enabled for a file
1097
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001098``lock``
1099 called by the fcntl(2) system call for F_GETLK, F_SETLK, and
1100 F_SETLKW commands
Pekka J Enberg5ea626a2005-09-09 13:10:19 -07001101
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001102``get_unmapped_area``
1103 called by the mmap(2) system call
Pekka J Enberg5ea626a2005-09-09 13:10:19 -07001104
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001105``check_flags``
1106 called by the fcntl(2) system call for F_SETFL command
Pekka J Enberg5ea626a2005-09-09 13:10:19 -07001107
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001108``flock``
1109 called by the flock(2) system call
Pekka J Enberg5ea626a2005-09-09 13:10:19 -07001110
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001111``splice_write``
1112 called by the VFS to splice data from a pipe to a file. This
1113 method is used by the splice(2) system call
Pekka J Enbergd1195c52006-04-11 14:21:59 +02001114
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001115``splice_read``
1116 called by the VFS to splice data from file to a pipe. This
1117 method is used by the splice(2) system call
Pekka J Enbergd1195c52006-04-11 14:21:59 +02001118
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001119``setlease``
1120 called by the VFS to set or release a file lock lease. setlease
1121 implementations should call generic_setlease to record or remove
1122 the lease in the inode after setting it.
Hugh Dickins17cf28a2012-05-29 15:06:41 -07001123
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001124``fallocate``
1125 called by the VFS to preallocate blocks or punch a hole.
Hugh Dickins17cf28a2012-05-29 15:06:41 -07001126
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001127``copy_file_range``
1128 called by the copy_file_range(2) system call.
Amir Goldstein17ef4452018-08-27 15:56:01 +03001129
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001130``remap_file_range``
1131 called by the ioctl(2) system call for FICLONERANGE and FICLONE
1132 and FIDEDUPERANGE commands to remap file ranges. An
1133 implementation should remap len bytes at pos_in of the source
1134 file into the dest file at pos_out. Implementations must handle
1135 callers passing in len == 0; this means "remap to the end of the
1136 source file". The return value should the number of bytes
1137 remapped, or the usual negative error code if errors occurred
1138 before any bytes were remapped. The remap_flags parameter
1139 accepts REMAP_FILE_* flags. If REMAP_FILE_DEDUP is set then the
1140 implementation must only remap if the requested file ranges have
Julia Lawallcb56eca2020-07-26 20:43:40 +02001141 identical contents. If REMAP_FILE_CAN_SHORTEN is set, the caller is
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001142 ok with the implementation shortening the request length to
1143 satisfy alignment or EOF requirements (or any other reason).
Amir Goldstein17ef4452018-08-27 15:56:01 +03001144
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001145``fadvise``
1146 possibly called by the fadvise64() system call.
Amir Goldstein45cd0fa2018-08-27 15:56:02 +03001147
Linus Torvalds1da177e2005-04-16 15:20:36 -07001148Note that the file operations are implemented by the specific
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +10001149filesystem in which the inode resides. When opening a device node
Linus Torvalds1da177e2005-04-16 15:20:36 -07001150(character or block special) most filesystems will call special
1151support routines in the VFS which will locate the required device
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +10001152driver information. These support routines replace the filesystem file
Linus Torvalds1da177e2005-04-16 15:20:36 -07001153operations with those for the device driver, and then proceed to call
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +10001154the new open() method for the file. This is how opening a device file
Linus Torvalds1da177e2005-04-16 15:20:36 -07001155in the filesystem eventually ends up calling the device driver open()
Pekka J Enberg5ea626a2005-09-09 13:10:19 -07001156method.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001157
1158
Pekka J Enberg5ea626a2005-09-09 13:10:19 -07001159Directory Entry Cache (dcache)
1160==============================
1161
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162
1163struct dentry_operations
Pekka J Enberg5ea626a2005-09-09 13:10:19 -07001164------------------------
Linus Torvalds1da177e2005-04-16 15:20:36 -07001165
1166This describes how a filesystem can overload the standard dentry
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +10001167operations. Dentries and the dcache are the domain of the VFS and the
1168individual filesystem implementations. Device drivers have no business
1169here. These methods may be set to NULL, as they are either optional or
1170the VFS uses a default. As of kernel 2.6.22, the following members are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001171defined:
1172
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +10001173.. code-block:: c
Linus Torvalds1da177e2005-04-16 15:20:36 -07001174
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +10001175 struct dentry_operations {
1176 int (*d_revalidate)(struct dentry *, unsigned int);
1177 int (*d_weak_revalidate)(struct dentry *, unsigned int);
1178 int (*d_hash)(const struct dentry *, struct qstr *);
1179 int (*d_compare)(const struct dentry *,
1180 unsigned int, const char *, const struct qstr *);
1181 int (*d_delete)(const struct dentry *);
1182 int (*d_init)(struct dentry *);
1183 void (*d_release)(struct dentry *);
1184 void (*d_iput)(struct dentry *, struct inode *);
1185 char *(*d_dname)(struct dentry *, char *, int);
1186 struct vfsmount *(*d_automount)(struct path *);
1187 int (*d_manage)(const struct path *, bool);
1188 struct dentry *(*d_real)(struct dentry *, const struct inode *);
1189 };
1190
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001191``d_revalidate``
1192 called when the VFS needs to revalidate a dentry. This is
1193 called whenever a name look-up finds a dentry in the dcache.
1194 Most local filesystems leave this as NULL, because all their
1195 dentries in the dcache are valid. Network filesystems are
1196 different since things can change on the server without the
1197 client necessarily being aware of it.
Jeff Laytonecf3d1f2013-02-20 11:19:05 -05001198
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001199 This function should return a positive value if the dentry is
1200 still valid, and zero or a negative error code if it isn't.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001201
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001202 d_revalidate may be called in rcu-walk mode (flags &
1203 LOOKUP_RCU). If in rcu-walk mode, the filesystem must
1204 revalidate the dentry without blocking or storing to the dentry,
1205 d_parent and d_inode should not be used without care (because
1206 they can change and, in d_inode case, even become NULL under
1207 us).
Nick Piggin34286d62011-01-07 17:49:57 +11001208
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001209 If a situation is encountered that rcu-walk cannot handle,
1210 return
Nick Piggin34286d62011-01-07 17:49:57 +11001211 -ECHILD and it will be called again in ref-walk mode.
1212
Glenn Washburn29cb0f62023-02-27 12:40:42 -06001213``d_weak_revalidate``
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001214 called when the VFS needs to revalidate a "jumped" dentry. This
1215 is called when a path-walk ends at dentry that was not acquired
1216 by doing a lookup in the parent directory. This includes "/",
1217 "." and "..", as well as procfs-style symlinks and mountpoint
1218 traversal.
Jeff Laytonecf3d1f2013-02-20 11:19:05 -05001219
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001220 In this case, we are less concerned with whether the dentry is
1221 still fully correct, but rather that the inode is still valid.
1222 As with d_revalidate, most local filesystems will set this to
1223 NULL since their dcache entries are always valid.
Jeff Laytonecf3d1f2013-02-20 11:19:05 -05001224
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001225 This function has the same return code semantics as
1226 d_revalidate.
Jeff Laytonecf3d1f2013-02-20 11:19:05 -05001227
1228 d_weak_revalidate is only called after leaving rcu-walk mode.
1229
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001230``d_hash``
1231 called when the VFS adds a dentry to the hash table. The first
Nick Piggin621e1552011-01-07 17:49:27 +11001232 dentry passed to d_hash is the parent directory that the name is
Linus Torvaldsda53be12013-05-21 15:22:44 -07001233 to be hashed into.
Nick Pigginb1e6a012011-01-07 17:49:28 +11001234
1235 Same locking and synchronisation rules as d_compare regarding
1236 what is safe to dereference etc.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001237
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001238``d_compare``
1239 called to compare a dentry name with a given name. The first
Nick Piggin621e1552011-01-07 17:49:27 +11001240 dentry is the parent of the dentry to be compared, the second is
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001241 the child dentry. len and name string are properties of the
1242 dentry to be compared. qstr is the name to compare it with.
Nick Piggin621e1552011-01-07 17:49:27 +11001243
1244 Must be constant and idempotent, and should not take locks if
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001245 possible, and should not or store into the dentry. Should not
1246 dereference pointers outside the dentry without lots of care
1247 (eg. d_parent, d_inode, d_name should not be used).
Nick Piggin621e1552011-01-07 17:49:27 +11001248
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001249 However, our vfsmount is pinned, and RCU held, so the dentries
1250 and inodes won't disappear, neither will our sb or filesystem
1251 module. ->d_sb may be used.
Nick Piggin621e1552011-01-07 17:49:27 +11001252
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001253 It is a tricky calling convention because it needs to be called
1254 under "rcu-walk", ie. without any locks or references on things.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001255
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001256``d_delete``
1257 called when the last reference to a dentry is dropped and the
1258 dcache is deciding whether or not to cache it. Return 1 to
1259 delete immediately, or 0 to cache the dentry. Default is NULL
1260 which means to always cache a reachable dentry. d_delete must
1261 be constant and idempotent.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001262
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001263``d_init``
1264 called when a dentry is allocated
Miklos Szeredi285b1022016-06-28 11:47:32 +02001265
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001266``d_release``
1267 called when a dentry is really deallocated
Linus Torvalds1da177e2005-04-16 15:20:36 -07001268
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001269``d_iput``
1270 called when a dentry loses its inode (just prior to its being
1271 deallocated). The default when this is NULL is that the VFS
1272 calls iput(). If you define this method, you must call iput()
1273 yourself
Linus Torvalds1da177e2005-04-16 15:20:36 -07001274
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001275``d_dname``
1276 called when the pathname of a dentry should be generated.
1277 Useful for some pseudo filesystems (sockfs, pipefs, ...) to
1278 delay pathname generation. (Instead of doing it when dentry is
1279 created, it's done only when the path is needed.). Real
1280 filesystems probably dont want to use it, because their dentries
1281 are present in global dcache hash, so their hash should be an
1282 invariant. As no lock is held, d_dname() should not try to
1283 modify the dentry itself, unless appropriate SMP safety is used.
1284 CAUTION : d_path() logic is quite tricky. The correct way to
1285 return for example "Hello" is to put it at the end of the
1286 buffer, and returns a pointer to the first char.
1287 dynamic_dname() helper function is provided to take care of
1288 this.
Eric Dumazetc23fbb62007-05-08 00:26:18 -07001289
Miklos Szeredi0cac6432016-06-30 08:53:28 +02001290 Example :
1291
Tobin C. Hardingaf96c1e32019-05-15 10:29:13 +10001292.. code-block:: c
1293
Miklos Szeredi0cac6432016-06-30 08:53:28 +02001294 static char *pipefs_dname(struct dentry *dent, char *buffer, int buflen)
1295 {
1296 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
1297 dentry->d_inode->i_ino);
1298 }
1299
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001300``d_automount``
1301 called when an automount dentry is to be traversed (optional).
1302 This should create a new VFS mount record and return the record
1303 to the caller. The caller is supplied with a path parameter
1304 giving the automount directory to describe the automount target
1305 and the parent VFS mount record to provide inheritable mount
1306 parameters. NULL should be returned if someone else managed to
1307 make the automount first. If the vfsmount creation failed, then
1308 an error code should be returned. If -EISDIR is returned, then
1309 the directory will be treated as an ordinary directory and
1310 returned to pathwalk to continue walking.
David Howellsea5b7782011-01-14 19:10:03 +00001311
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001312 If a vfsmount is returned, the caller will attempt to mount it
1313 on the mountpoint and will remove the vfsmount from its
1314 expiration list in the case of failure. The vfsmount should be
1315 returned with 2 refs on it to prevent automatic expiration - the
1316 caller will clean up the additional ref.
David Howells9875cf82011-01-14 18:45:21 +00001317
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001318 This function is only used if DCACHE_NEED_AUTOMOUNT is set on
1319 the dentry. This is set by __d_instantiate() if S_AUTOMOUNT is
1320 set on the inode being added.
David Howells9875cf82011-01-14 18:45:21 +00001321
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001322``d_manage``
1323 called to allow the filesystem to manage the transition from a
1324 dentry (optional). This allows autofs, for example, to hold up
1325 clients waiting to explore behind a 'mountpoint' while letting
1326 the daemon go past and construct the subtree there. 0 should be
1327 returned to let the calling process continue. -EISDIR can be
1328 returned to tell pathwalk to use this directory as an ordinary
1329 directory and to ignore anything mounted on it and not to check
1330 the automount flag. Any other error code will abort pathwalk
1331 completely.
David Howellscc53ce52011-01-14 18:45:26 +00001332
David Howellsab909112011-01-14 18:46:51 +00001333 If the 'rcu_walk' parameter is true, then the caller is doing a
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001334 pathwalk in RCU-walk mode. Sleeping is not permitted in this
1335 mode, and the caller can be asked to leave it and call again by
1336 returning -ECHILD. -EISDIR may also be returned to tell
1337 pathwalk to ignore d_automount or any mounts.
David Howellsab909112011-01-14 18:46:51 +00001338
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001339 This function is only used if DCACHE_MANAGE_TRANSIT is set on
1340 the dentry being transited from.
David Howellscc53ce52011-01-14 18:45:26 +00001341
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001342``d_real``
1343 overlay/union type filesystems implement this method to return
1344 one of the underlying dentries hidden by the overlay. It is
1345 used in two different modes:
Eric Dumazetc23fbb62007-05-08 00:26:18 -07001346
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001347 Called from file_dentry() it returns the real dentry matching
1348 the inode argument. The real dentry may be from a lower layer
1349 already copied up, but still referenced from the file. This
1350 mode is selected with a non-NULL inode argument.
Miklos Szeredie698b8a2016-06-30 08:53:27 +02001351
Miklos Szeredifb160432018-07-18 15:44:44 +02001352 With NULL inode the topmost real underlying dentry is returned.
Eric Dumazetc23fbb62007-05-08 00:26:18 -07001353
Linus Torvalds1da177e2005-04-16 15:20:36 -07001354Each dentry has a pointer to its parent dentry, as well as a hash list
Tobin C. Harding4ee33ea2019-05-15 10:29:06 +10001355of child dentries. Child dentries are basically like files in a
Linus Torvalds1da177e2005-04-16 15:20:36 -07001356directory.
1357
Pekka J Enberg5ea626a2005-09-09 13:10:19 -07001358
Pekka Enbergcc7d1f82005-11-07 01:01:08 -08001359Directory Entry Cache API
Linus Torvalds1da177e2005-04-16 15:20:36 -07001360--------------------------
1361
1362There are a number of functions defined which permit a filesystem to
1363manipulate dentries:
1364
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001365``dget``
1366 open a new handle for an existing dentry (this just increments
Linus Torvalds1da177e2005-04-16 15:20:36 -07001367 the usage count)
1368
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001369``dput``
1370 close a handle for a dentry (decrements the usage count). If
Nick Pigginfe15ce42011-01-07 17:49:23 +11001371 the usage count drops to 0, and the dentry is still in its
1372 parent's hash, the "d_delete" method is called to check whether
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001373 it should be cached. If it should not be cached, or if the
1374 dentry is not hashed, it is deleted. Otherwise cached dentries
1375 are put into an LRU list to be reclaimed on memory shortage.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001376
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001377``d_drop``
1378 this unhashes a dentry from its parents hash list. A subsequent
1379 call to dput() will deallocate the dentry if its usage count
1380 drops to 0
Linus Torvalds1da177e2005-04-16 15:20:36 -07001381
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001382``d_delete``
1383 delete a dentry. If there are no other open references to the
1384 dentry then the dentry is turned into a negative dentry (the
1385 d_iput() method is called). If there are other references, then
1386 d_drop() is called instead
Linus Torvalds1da177e2005-04-16 15:20:36 -07001387
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001388``d_add``
1389 add a dentry to its parents hash list and then calls
Linus Torvalds1da177e2005-04-16 15:20:36 -07001390 d_instantiate()
1391
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001392``d_instantiate``
1393 add a dentry to the alias hash list for the inode and updates
1394 the "d_inode" member. The "i_count" member in the inode
1395 structure should be set/incremented. If the inode pointer is
1396 NULL, the dentry is called a "negative dentry". This function
1397 is commonly called when an inode is created for an existing
1398 negative dentry
Linus Torvalds1da177e2005-04-16 15:20:36 -07001399
Tobin C. Hardingee5dc042019-06-04 10:26:56 +10001400``d_lookup``
1401 look up a dentry given its parent and path name component It
1402 looks up the child of that given name from the dcache hash
1403 table. If it is found, the reference count is incremented and
1404 the dentry is returned. The caller must use dput() to free the
1405 dentry when it finishes using it.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001406
Tobin C. Hardinge04c83c2019-05-15 10:29:08 +10001407
Miklos Szeredif84e3f52008-02-08 04:21:34 -08001408Mount Options
1409=============
1410
Tobin C. Hardinge04c83c2019-05-15 10:29:08 +10001411
Miklos Szeredif84e3f52008-02-08 04:21:34 -08001412Parsing options
1413---------------
1414
1415On mount and remount the filesystem is passed a string containing a
1416comma separated list of mount options. The options can have either of
1417these forms:
1418
1419 option
1420 option=value
1421
1422The <linux/parser.h> header defines an API that helps parse these
1423options. There are plenty of examples on how to use it in existing
1424filesystems.
1425
Tobin C. Hardinge04c83c2019-05-15 10:29:08 +10001426
Miklos Szeredif84e3f52008-02-08 04:21:34 -08001427Showing options
1428---------------
1429
Tobin C. Harding90caa782019-05-15 10:29:07 +10001430If a filesystem accepts mount options, it must define show_options() to
1431show all the currently active options. The rules are:
Miklos Szeredif84e3f52008-02-08 04:21:34 -08001432
1433 - options MUST be shown which are not default or their values differ
1434 from the default
1435
1436 - options MAY be shown which are enabled by default or have their
1437 default value
1438
Tobin C. Harding90caa782019-05-15 10:29:07 +10001439Options used only internally between a mount helper and the kernel (such
1440as file descriptors), or which only have an effect during the mounting
1441(such as ones controlling the creation of a journal) are exempt from the
1442above rules.
Miklos Szeredif84e3f52008-02-08 04:21:34 -08001443
Tobin C. Harding90caa782019-05-15 10:29:07 +10001444The underlying reason for the above rules is to make sure, that a mount
1445can be accurately replicated (e.g. umounting and mounting again) based
1446on the information found in /proc/mounts.
Miklos Szeredif84e3f52008-02-08 04:21:34 -08001447
Tobin C. Hardinge04c83c2019-05-15 10:29:08 +10001448
Pekka Enbergcc7d1f82005-11-07 01:01:08 -08001449Resources
1450=========
1451
1452(Note some of these resources are not up-to-date with the latest kernel
1453 version.)
1454
1455Creating Linux virtual filesystems. 2002
Alexander A. Klimovc69f22f2020-06-21 15:35:52 +02001456 <https://lwn.net/Articles/13325/>
Pekka Enbergcc7d1f82005-11-07 01:01:08 -08001457
1458The Linux Virtual File-system Layer by Neil Brown. 1999
1459 <http://www.cse.unsw.edu.au/~neilb/oss/linux-commentary/vfs.html>
1460
1461A tour of the Linux VFS by Michael K. Johnson. 1996
Alexander A. Klimovc69f22f2020-06-21 15:35:52 +02001462 <https://www.tldp.org/LDP/khg/HyperNews/get/fs/vfstour.html>
Pekka Enbergcc7d1f82005-11-07 01:01:08 -08001463
1464A small trail through the Linux kernel by Andries Brouwer. 2001
Alexander A. Klimovc69f22f2020-06-21 15:35:52 +02001465 <https://www.win.tue.nl/~aeb/linux/vfs/trail.html>