Boris Brezillon | 3d4af7c | 2018-09-07 00:38:49 +0200 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) |
| 4 | * 2002-2006 Thomas Gleixner (tglx@linutronix.de) |
| 5 | * |
| 6 | * Credits: |
| 7 | * David Woodhouse for adding multichip support |
| 8 | * |
| 9 | * Aleph One Ltd. and Toby Churchill Ltd. for supporting the |
| 10 | * rework for 2K page size chips |
| 11 | * |
| 12 | * This file contains all legacy helpers/code that should be removed |
| 13 | * at some point. |
| 14 | */ |
| 15 | |
| 16 | #include <linux/delay.h> |
| 17 | #include <linux/io.h> |
| 18 | #include <linux/nmi.h> |
| 19 | |
| 20 | #include "internals.h" |
| 21 | |
| 22 | /** |
| 23 | * nand_read_byte - [DEFAULT] read one byte from the chip |
| 24 | * @chip: NAND chip object |
| 25 | * |
| 26 | * Default read function for 8bit buswidth |
| 27 | */ |
| 28 | static uint8_t nand_read_byte(struct nand_chip *chip) |
| 29 | { |
| 30 | return readb(chip->legacy.IO_ADDR_R); |
| 31 | } |
| 32 | |
| 33 | /** |
| 34 | * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip |
| 35 | * @chip: NAND chip object |
| 36 | * |
| 37 | * Default read function for 16bit buswidth with endianness conversion. |
| 38 | * |
| 39 | */ |
| 40 | static uint8_t nand_read_byte16(struct nand_chip *chip) |
| 41 | { |
| 42 | return (uint8_t) cpu_to_le16(readw(chip->legacy.IO_ADDR_R)); |
| 43 | } |
| 44 | |
| 45 | /** |
| 46 | * nand_select_chip - [DEFAULT] control CE line |
| 47 | * @chip: NAND chip object |
| 48 | * @chipnr: chipnumber to select, -1 for deselect |
| 49 | * |
| 50 | * Default select function for 1 chip devices. |
| 51 | */ |
| 52 | static void nand_select_chip(struct nand_chip *chip, int chipnr) |
| 53 | { |
| 54 | switch (chipnr) { |
| 55 | case -1: |
| 56 | chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, |
| 57 | 0 | NAND_CTRL_CHANGE); |
| 58 | break; |
| 59 | case 0: |
| 60 | break; |
| 61 | |
| 62 | default: |
| 63 | BUG(); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | /** |
| 68 | * nand_write_byte - [DEFAULT] write single byte to chip |
| 69 | * @chip: NAND chip object |
| 70 | * @byte: value to write |
| 71 | * |
| 72 | * Default function to write a byte to I/O[7:0] |
| 73 | */ |
| 74 | static void nand_write_byte(struct nand_chip *chip, uint8_t byte) |
| 75 | { |
| 76 | chip->legacy.write_buf(chip, &byte, 1); |
| 77 | } |
| 78 | |
| 79 | /** |
| 80 | * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 |
| 81 | * @chip: NAND chip object |
| 82 | * @byte: value to write |
| 83 | * |
| 84 | * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. |
| 85 | */ |
| 86 | static void nand_write_byte16(struct nand_chip *chip, uint8_t byte) |
| 87 | { |
| 88 | uint16_t word = byte; |
| 89 | |
| 90 | /* |
| 91 | * It's not entirely clear what should happen to I/O[15:8] when writing |
| 92 | * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: |
| 93 | * |
| 94 | * When the host supports a 16-bit bus width, only data is |
| 95 | * transferred at the 16-bit width. All address and command line |
| 96 | * transfers shall use only the lower 8-bits of the data bus. During |
| 97 | * command transfers, the host may place any value on the upper |
| 98 | * 8-bits of the data bus. During address transfers, the host shall |
| 99 | * set the upper 8-bits of the data bus to 00h. |
| 100 | * |
| 101 | * One user of the write_byte callback is nand_set_features. The |
| 102 | * four parameters are specified to be written to I/O[7:0], but this is |
| 103 | * neither an address nor a command transfer. Let's assume a 0 on the |
| 104 | * upper I/O lines is OK. |
| 105 | */ |
| 106 | chip->legacy.write_buf(chip, (uint8_t *)&word, 2); |
| 107 | } |
| 108 | |
| 109 | /** |
| 110 | * nand_write_buf - [DEFAULT] write buffer to chip |
| 111 | * @chip: NAND chip object |
| 112 | * @buf: data buffer |
| 113 | * @len: number of bytes to write |
| 114 | * |
| 115 | * Default write function for 8bit buswidth. |
| 116 | */ |
| 117 | static void nand_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) |
| 118 | { |
| 119 | iowrite8_rep(chip->legacy.IO_ADDR_W, buf, len); |
| 120 | } |
| 121 | |
| 122 | /** |
| 123 | * nand_read_buf - [DEFAULT] read chip data into buffer |
| 124 | * @chip: NAND chip object |
| 125 | * @buf: buffer to store date |
| 126 | * @len: number of bytes to read |
| 127 | * |
| 128 | * Default read function for 8bit buswidth. |
| 129 | */ |
| 130 | static void nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len) |
| 131 | { |
| 132 | ioread8_rep(chip->legacy.IO_ADDR_R, buf, len); |
| 133 | } |
| 134 | |
| 135 | /** |
| 136 | * nand_write_buf16 - [DEFAULT] write buffer to chip |
| 137 | * @chip: NAND chip object |
| 138 | * @buf: data buffer |
| 139 | * @len: number of bytes to write |
| 140 | * |
| 141 | * Default write function for 16bit buswidth. |
| 142 | */ |
| 143 | static void nand_write_buf16(struct nand_chip *chip, const uint8_t *buf, |
| 144 | int len) |
| 145 | { |
| 146 | u16 *p = (u16 *) buf; |
| 147 | |
| 148 | iowrite16_rep(chip->legacy.IO_ADDR_W, p, len >> 1); |
| 149 | } |
| 150 | |
| 151 | /** |
| 152 | * nand_read_buf16 - [DEFAULT] read chip data into buffer |
| 153 | * @chip: NAND chip object |
| 154 | * @buf: buffer to store date |
| 155 | * @len: number of bytes to read |
| 156 | * |
| 157 | * Default read function for 16bit buswidth. |
| 158 | */ |
| 159 | static void nand_read_buf16(struct nand_chip *chip, uint8_t *buf, int len) |
| 160 | { |
| 161 | u16 *p = (u16 *) buf; |
| 162 | |
| 163 | ioread16_rep(chip->legacy.IO_ADDR_R, p, len >> 1); |
| 164 | } |
| 165 | |
| 166 | /** |
| 167 | * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. |
| 168 | * @mtd: MTD device structure |
| 169 | * @timeo: Timeout |
| 170 | * |
| 171 | * Helper function for nand_wait_ready used when needing to wait in interrupt |
| 172 | * context. |
| 173 | */ |
| 174 | static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo) |
| 175 | { |
| 176 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 177 | int i; |
| 178 | |
| 179 | /* Wait for the device to get ready */ |
| 180 | for (i = 0; i < timeo; i++) { |
| 181 | if (chip->legacy.dev_ready(chip)) |
| 182 | break; |
| 183 | touch_softlockup_watchdog(); |
| 184 | mdelay(1); |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | /** |
| 189 | * nand_wait_ready - [GENERIC] Wait for the ready pin after commands. |
| 190 | * @chip: NAND chip object |
| 191 | * |
| 192 | * Wait for the ready pin after a command, and warn if a timeout occurs. |
| 193 | */ |
| 194 | void nand_wait_ready(struct nand_chip *chip) |
| 195 | { |
| 196 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 197 | unsigned long timeo = 400; |
| 198 | |
| 199 | if (in_interrupt() || oops_in_progress) |
| 200 | return panic_nand_wait_ready(mtd, timeo); |
| 201 | |
| 202 | /* Wait until command is processed or timeout occurs */ |
| 203 | timeo = jiffies + msecs_to_jiffies(timeo); |
| 204 | do { |
| 205 | if (chip->legacy.dev_ready(chip)) |
| 206 | return; |
| 207 | cond_resched(); |
| 208 | } while (time_before(jiffies, timeo)); |
| 209 | |
| 210 | if (!chip->legacy.dev_ready(chip)) |
| 211 | pr_warn_ratelimited("timeout while waiting for chip to become ready\n"); |
| 212 | } |
| 213 | EXPORT_SYMBOL_GPL(nand_wait_ready); |
| 214 | |
| 215 | /** |
| 216 | * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands. |
| 217 | * @mtd: MTD device structure |
| 218 | * @timeo: Timeout in ms |
| 219 | * |
| 220 | * Wait for status ready (i.e. command done) or timeout. |
| 221 | */ |
| 222 | static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo) |
| 223 | { |
| 224 | register struct nand_chip *chip = mtd_to_nand(mtd); |
| 225 | int ret; |
| 226 | |
| 227 | timeo = jiffies + msecs_to_jiffies(timeo); |
| 228 | do { |
| 229 | u8 status; |
| 230 | |
| 231 | ret = nand_read_data_op(chip, &status, sizeof(status), true); |
| 232 | if (ret) |
| 233 | return; |
| 234 | |
| 235 | if (status & NAND_STATUS_READY) |
| 236 | break; |
| 237 | touch_softlockup_watchdog(); |
| 238 | } while (time_before(jiffies, timeo)); |
| 239 | }; |
| 240 | |
| 241 | /** |
| 242 | * nand_command - [DEFAULT] Send command to NAND device |
| 243 | * @chip: NAND chip object |
| 244 | * @command: the command to be sent |
| 245 | * @column: the column address for this command, -1 if none |
| 246 | * @page_addr: the page address for this command, -1 if none |
| 247 | * |
| 248 | * Send command to NAND device. This function is used for small page devices |
| 249 | * (512 Bytes per page). |
| 250 | */ |
| 251 | static void nand_command(struct nand_chip *chip, unsigned int command, |
| 252 | int column, int page_addr) |
| 253 | { |
| 254 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 255 | int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; |
| 256 | |
| 257 | /* Write out the command to the device */ |
| 258 | if (command == NAND_CMD_SEQIN) { |
| 259 | int readcmd; |
| 260 | |
| 261 | if (column >= mtd->writesize) { |
| 262 | /* OOB area */ |
| 263 | column -= mtd->writesize; |
| 264 | readcmd = NAND_CMD_READOOB; |
| 265 | } else if (column < 256) { |
| 266 | /* First 256 bytes --> READ0 */ |
| 267 | readcmd = NAND_CMD_READ0; |
| 268 | } else { |
| 269 | column -= 256; |
| 270 | readcmd = NAND_CMD_READ1; |
| 271 | } |
| 272 | chip->legacy.cmd_ctrl(chip, readcmd, ctrl); |
| 273 | ctrl &= ~NAND_CTRL_CHANGE; |
| 274 | } |
| 275 | if (command != NAND_CMD_NONE) |
| 276 | chip->legacy.cmd_ctrl(chip, command, ctrl); |
| 277 | |
| 278 | /* Address cycle, when necessary */ |
| 279 | ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; |
| 280 | /* Serially input address */ |
| 281 | if (column != -1) { |
| 282 | /* Adjust columns for 16 bit buswidth */ |
| 283 | if (chip->options & NAND_BUSWIDTH_16 && |
| 284 | !nand_opcode_8bits(command)) |
| 285 | column >>= 1; |
| 286 | chip->legacy.cmd_ctrl(chip, column, ctrl); |
| 287 | ctrl &= ~NAND_CTRL_CHANGE; |
| 288 | } |
| 289 | if (page_addr != -1) { |
| 290 | chip->legacy.cmd_ctrl(chip, page_addr, ctrl); |
| 291 | ctrl &= ~NAND_CTRL_CHANGE; |
| 292 | chip->legacy.cmd_ctrl(chip, page_addr >> 8, ctrl); |
| 293 | if (chip->options & NAND_ROW_ADDR_3) |
| 294 | chip->legacy.cmd_ctrl(chip, page_addr >> 16, ctrl); |
| 295 | } |
| 296 | chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, |
| 297 | NAND_NCE | NAND_CTRL_CHANGE); |
| 298 | |
| 299 | /* |
| 300 | * Program and erase have their own busy handlers status and sequential |
| 301 | * in needs no delay |
| 302 | */ |
| 303 | switch (command) { |
| 304 | |
| 305 | case NAND_CMD_NONE: |
| 306 | case NAND_CMD_PAGEPROG: |
| 307 | case NAND_CMD_ERASE1: |
| 308 | case NAND_CMD_ERASE2: |
| 309 | case NAND_CMD_SEQIN: |
| 310 | case NAND_CMD_STATUS: |
| 311 | case NAND_CMD_READID: |
| 312 | case NAND_CMD_SET_FEATURES: |
| 313 | return; |
| 314 | |
| 315 | case NAND_CMD_RESET: |
| 316 | if (chip->legacy.dev_ready) |
| 317 | break; |
| 318 | udelay(chip->legacy.chip_delay); |
| 319 | chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS, |
| 320 | NAND_CTRL_CLE | NAND_CTRL_CHANGE); |
| 321 | chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, |
| 322 | NAND_NCE | NAND_CTRL_CHANGE); |
| 323 | /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ |
| 324 | nand_wait_status_ready(mtd, 250); |
| 325 | return; |
| 326 | |
| 327 | /* This applies to read commands */ |
| 328 | case NAND_CMD_READ0: |
| 329 | /* |
| 330 | * READ0 is sometimes used to exit GET STATUS mode. When this |
| 331 | * is the case no address cycles are requested, and we can use |
| 332 | * this information to detect that we should not wait for the |
| 333 | * device to be ready. |
| 334 | */ |
| 335 | if (column == -1 && page_addr == -1) |
| 336 | return; |
| 337 | |
| 338 | default: |
| 339 | /* |
| 340 | * If we don't have access to the busy pin, we apply the given |
| 341 | * command delay |
| 342 | */ |
| 343 | if (!chip->legacy.dev_ready) { |
| 344 | udelay(chip->legacy.chip_delay); |
| 345 | return; |
| 346 | } |
| 347 | } |
| 348 | /* |
| 349 | * Apply this short delay always to ensure that we do wait tWB in |
| 350 | * any case on any machine. |
| 351 | */ |
| 352 | ndelay(100); |
| 353 | |
| 354 | nand_wait_ready(chip); |
| 355 | } |
| 356 | |
| 357 | static void nand_ccs_delay(struct nand_chip *chip) |
| 358 | { |
| 359 | /* |
| 360 | * The controller already takes care of waiting for tCCS when the RNDIN |
| 361 | * or RNDOUT command is sent, return directly. |
| 362 | */ |
| 363 | if (!(chip->options & NAND_WAIT_TCCS)) |
| 364 | return; |
| 365 | |
| 366 | /* |
| 367 | * Wait tCCS_min if it is correctly defined, otherwise wait 500ns |
| 368 | * (which should be safe for all NANDs). |
| 369 | */ |
| 370 | if (chip->setup_data_interface) |
| 371 | ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000); |
| 372 | else |
| 373 | ndelay(500); |
| 374 | } |
| 375 | |
| 376 | /** |
| 377 | * nand_command_lp - [DEFAULT] Send command to NAND large page device |
| 378 | * @chip: NAND chip object |
| 379 | * @command: the command to be sent |
| 380 | * @column: the column address for this command, -1 if none |
| 381 | * @page_addr: the page address for this command, -1 if none |
| 382 | * |
| 383 | * Send command to NAND device. This is the version for the new large page |
| 384 | * devices. We don't have the separate regions as we have in the small page |
| 385 | * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. |
| 386 | */ |
| 387 | static void nand_command_lp(struct nand_chip *chip, unsigned int command, |
| 388 | int column, int page_addr) |
| 389 | { |
| 390 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 391 | |
| 392 | /* Emulate NAND_CMD_READOOB */ |
| 393 | if (command == NAND_CMD_READOOB) { |
| 394 | column += mtd->writesize; |
| 395 | command = NAND_CMD_READ0; |
| 396 | } |
| 397 | |
| 398 | /* Command latch cycle */ |
| 399 | if (command != NAND_CMD_NONE) |
| 400 | chip->legacy.cmd_ctrl(chip, command, |
| 401 | NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); |
| 402 | |
| 403 | if (column != -1 || page_addr != -1) { |
| 404 | int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; |
| 405 | |
| 406 | /* Serially input address */ |
| 407 | if (column != -1) { |
| 408 | /* Adjust columns for 16 bit buswidth */ |
| 409 | if (chip->options & NAND_BUSWIDTH_16 && |
| 410 | !nand_opcode_8bits(command)) |
| 411 | column >>= 1; |
| 412 | chip->legacy.cmd_ctrl(chip, column, ctrl); |
| 413 | ctrl &= ~NAND_CTRL_CHANGE; |
| 414 | |
| 415 | /* Only output a single addr cycle for 8bits opcodes. */ |
| 416 | if (!nand_opcode_8bits(command)) |
| 417 | chip->legacy.cmd_ctrl(chip, column >> 8, ctrl); |
| 418 | } |
| 419 | if (page_addr != -1) { |
| 420 | chip->legacy.cmd_ctrl(chip, page_addr, ctrl); |
| 421 | chip->legacy.cmd_ctrl(chip, page_addr >> 8, |
| 422 | NAND_NCE | NAND_ALE); |
| 423 | if (chip->options & NAND_ROW_ADDR_3) |
| 424 | chip->legacy.cmd_ctrl(chip, page_addr >> 16, |
| 425 | NAND_NCE | NAND_ALE); |
| 426 | } |
| 427 | } |
| 428 | chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, |
| 429 | NAND_NCE | NAND_CTRL_CHANGE); |
| 430 | |
| 431 | /* |
| 432 | * Program and erase have their own busy handlers status, sequential |
| 433 | * in and status need no delay. |
| 434 | */ |
| 435 | switch (command) { |
| 436 | |
| 437 | case NAND_CMD_NONE: |
| 438 | case NAND_CMD_CACHEDPROG: |
| 439 | case NAND_CMD_PAGEPROG: |
| 440 | case NAND_CMD_ERASE1: |
| 441 | case NAND_CMD_ERASE2: |
| 442 | case NAND_CMD_SEQIN: |
| 443 | case NAND_CMD_STATUS: |
| 444 | case NAND_CMD_READID: |
| 445 | case NAND_CMD_SET_FEATURES: |
| 446 | return; |
| 447 | |
| 448 | case NAND_CMD_RNDIN: |
| 449 | nand_ccs_delay(chip); |
| 450 | return; |
| 451 | |
| 452 | case NAND_CMD_RESET: |
| 453 | if (chip->legacy.dev_ready) |
| 454 | break; |
| 455 | udelay(chip->legacy.chip_delay); |
| 456 | chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS, |
| 457 | NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); |
| 458 | chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, |
| 459 | NAND_NCE | NAND_CTRL_CHANGE); |
| 460 | /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ |
| 461 | nand_wait_status_ready(mtd, 250); |
| 462 | return; |
| 463 | |
| 464 | case NAND_CMD_RNDOUT: |
| 465 | /* No ready / busy check necessary */ |
| 466 | chip->legacy.cmd_ctrl(chip, NAND_CMD_RNDOUTSTART, |
| 467 | NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); |
| 468 | chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, |
| 469 | NAND_NCE | NAND_CTRL_CHANGE); |
| 470 | |
| 471 | nand_ccs_delay(chip); |
| 472 | return; |
| 473 | |
| 474 | case NAND_CMD_READ0: |
| 475 | /* |
| 476 | * READ0 is sometimes used to exit GET STATUS mode. When this |
| 477 | * is the case no address cycles are requested, and we can use |
| 478 | * this information to detect that READSTART should not be |
| 479 | * issued. |
| 480 | */ |
| 481 | if (column == -1 && page_addr == -1) |
| 482 | return; |
| 483 | |
| 484 | chip->legacy.cmd_ctrl(chip, NAND_CMD_READSTART, |
| 485 | NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); |
| 486 | chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, |
| 487 | NAND_NCE | NAND_CTRL_CHANGE); |
| 488 | |
| 489 | /* This applies to read commands */ |
| 490 | default: |
| 491 | /* |
| 492 | * If we don't have access to the busy pin, we apply the given |
| 493 | * command delay. |
| 494 | */ |
| 495 | if (!chip->legacy.dev_ready) { |
| 496 | udelay(chip->legacy.chip_delay); |
| 497 | return; |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | /* |
| 502 | * Apply this short delay always to ensure that we do wait tWB in |
| 503 | * any case on any machine. |
| 504 | */ |
| 505 | ndelay(100); |
| 506 | |
| 507 | nand_wait_ready(chip); |
| 508 | } |
| 509 | |
| 510 | /** |
| 511 | * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP |
| 512 | * @chip: nand chip info structure |
| 513 | * @addr: feature address. |
| 514 | * @subfeature_param: the subfeature parameters, a four bytes array. |
| 515 | * |
| 516 | * Should be used by NAND controller drivers that do not support the SET/GET |
| 517 | * FEATURES operations. |
| 518 | */ |
| 519 | int nand_get_set_features_notsupp(struct nand_chip *chip, int addr, |
| 520 | u8 *subfeature_param) |
| 521 | { |
| 522 | return -ENOTSUPP; |
| 523 | } |
| 524 | EXPORT_SYMBOL(nand_get_set_features_notsupp); |
| 525 | |
| 526 | /** |
| 527 | * nand_wait - [DEFAULT] wait until the command is done |
| 528 | * @mtd: MTD device structure |
| 529 | * @chip: NAND chip structure |
| 530 | * |
| 531 | * Wait for command done. This applies to erase and program only. |
| 532 | */ |
| 533 | static int nand_wait(struct nand_chip *chip) |
| 534 | { |
| 535 | |
| 536 | unsigned long timeo = 400; |
| 537 | u8 status; |
| 538 | int ret; |
| 539 | |
| 540 | /* |
| 541 | * Apply this short delay always to ensure that we do wait tWB in any |
| 542 | * case on any machine. |
| 543 | */ |
| 544 | ndelay(100); |
| 545 | |
| 546 | ret = nand_status_op(chip, NULL); |
| 547 | if (ret) |
| 548 | return ret; |
| 549 | |
| 550 | if (in_interrupt() || oops_in_progress) |
| 551 | panic_nand_wait(chip, timeo); |
| 552 | else { |
| 553 | timeo = jiffies + msecs_to_jiffies(timeo); |
| 554 | do { |
| 555 | if (chip->legacy.dev_ready) { |
| 556 | if (chip->legacy.dev_ready(chip)) |
| 557 | break; |
| 558 | } else { |
| 559 | ret = nand_read_data_op(chip, &status, |
| 560 | sizeof(status), true); |
| 561 | if (ret) |
| 562 | return ret; |
| 563 | |
| 564 | if (status & NAND_STATUS_READY) |
| 565 | break; |
| 566 | } |
| 567 | cond_resched(); |
| 568 | } while (time_before(jiffies, timeo)); |
| 569 | } |
| 570 | |
| 571 | ret = nand_read_data_op(chip, &status, sizeof(status), true); |
| 572 | if (ret) |
| 573 | return ret; |
| 574 | |
| 575 | /* This can happen if in case of timeout or buggy dev_ready */ |
| 576 | WARN_ON(!(status & NAND_STATUS_READY)); |
| 577 | return status; |
| 578 | } |
| 579 | |
| 580 | void nand_legacy_set_defaults(struct nand_chip *chip) |
| 581 | { |
| 582 | unsigned int busw = chip->options & NAND_BUSWIDTH_16; |
| 583 | |
| 584 | if (chip->exec_op) |
| 585 | return; |
| 586 | |
| 587 | /* check for proper chip_delay setup, set 20us if not */ |
| 588 | if (!chip->legacy.chip_delay) |
| 589 | chip->legacy.chip_delay = 20; |
| 590 | |
| 591 | /* check, if a user supplied command function given */ |
| 592 | if (!chip->legacy.cmdfunc && !chip->exec_op) |
| 593 | chip->legacy.cmdfunc = nand_command; |
| 594 | |
| 595 | /* check, if a user supplied wait function given */ |
| 596 | if (chip->legacy.waitfunc == NULL) |
| 597 | chip->legacy.waitfunc = nand_wait; |
| 598 | |
| 599 | if (!chip->select_chip) |
| 600 | chip->select_chip = nand_select_chip; |
| 601 | |
| 602 | /* If called twice, pointers that depend on busw may need to be reset */ |
| 603 | if (!chip->legacy.read_byte || chip->legacy.read_byte == nand_read_byte) |
| 604 | chip->legacy.read_byte = busw ? nand_read_byte16 : nand_read_byte; |
| 605 | if (!chip->legacy.write_buf || chip->legacy.write_buf == nand_write_buf) |
| 606 | chip->legacy.write_buf = busw ? nand_write_buf16 : nand_write_buf; |
| 607 | if (!chip->legacy.write_byte || chip->legacy.write_byte == nand_write_byte) |
| 608 | chip->legacy.write_byte = busw ? nand_write_byte16 : nand_write_byte; |
| 609 | if (!chip->legacy.read_buf || chip->legacy.read_buf == nand_read_buf) |
| 610 | chip->legacy.read_buf = busw ? nand_read_buf16 : nand_read_buf; |
| 611 | } |
| 612 | |
| 613 | void nand_legacy_adjust_cmdfunc(struct nand_chip *chip) |
| 614 | { |
| 615 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 616 | |
| 617 | /* Do not replace user supplied command function! */ |
| 618 | if (mtd->writesize > 512 && chip->legacy.cmdfunc == nand_command) |
| 619 | chip->legacy.cmdfunc = nand_command_lp; |
| 620 | } |
| 621 | |
| 622 | int nand_legacy_check_hooks(struct nand_chip *chip) |
| 623 | { |
| 624 | /* |
| 625 | * ->legacy.cmdfunc() is legacy and will only be used if ->exec_op() is |
| 626 | * not populated. |
| 627 | */ |
| 628 | if (chip->exec_op) |
| 629 | return 0; |
| 630 | |
| 631 | /* |
| 632 | * Default functions assigned for ->legacy.cmdfunc() and |
| 633 | * ->select_chip() both expect ->legacy.cmd_ctrl() to be populated. |
| 634 | */ |
| 635 | if ((!chip->legacy.cmdfunc || !chip->select_chip) && |
| 636 | !chip->legacy.cmd_ctrl) { |
| 637 | pr_err("->legacy.cmd_ctrl() should be provided\n"); |
| 638 | return -EINVAL; |
| 639 | } |
| 640 | |
| 641 | return 0; |
| 642 | } |