blob: f38e5c1b87e474557a1bc0392f6a7ea3b51638cf [file] [log] [blame]
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Marvell NAND flash controller driver
4 *
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7 *
Miquel Raynal33c1c5f2018-08-05 16:52:56 +02008 *
9 * This NAND controller driver handles two versions of the hardware,
10 * one is called NFCv1 and is available on PXA SoCs and the other is
11 * called NFCv2 and is available on Armada SoCs.
12 *
13 * The main visible difference is that NFCv1 only has Hamming ECC
14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
15 * is not used with NFCv2.
16 *
17 * The ECC layouts are depicted in details in Marvell AN-379, but here
18 * is a brief description.
19 *
20 * When using Hamming, the data is split in 512B chunks (either 1, 2
21 * or 4) and each chunk will have its own ECC "digest" of 6B at the
22 * beginning of the OOB area and eventually the remaining free OOB
23 * bytes (also called "spare" bytes in the driver). This engine
24 * corrects up to 1 bit per chunk and detects reliably an error if
25 * there are at most 2 bitflips. Here is the page layout used by the
26 * controller when Hamming is chosen:
27 *
28 * +-------------------------------------------------------------+
29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
30 * +-------------------------------------------------------------+
31 *
32 * When using the BCH engine, there are N identical (data + free OOB +
33 * ECC) sections and potentially an extra one to deal with
34 * configurations where the chosen (data + free OOB + ECC) sizes do
35 * not align with the page (data + OOB) size. ECC bytes are always
36 * 30B per ECC chunk. Here is the page layout used by the controller
37 * when BCH is chosen:
38 *
39 * +-----------------------------------------
40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
41 * +-----------------------------------------
42 *
43 * -------------------------------------------
44 * ... | Data N | Free OOB bytes N | ECC N |
45 * -------------------------------------------
46 *
47 * --------------------------------------------+
48 * Last Data | Last Free OOB bytes | Last ECC |
49 * --------------------------------------------+
50 *
51 * In both cases, the layout seen by the user is always: all data
52 * first, then all free OOB bytes and finally all ECC bytes. With BCH,
53 * ECC bytes are 30B long and are padded with 0xFF to align on 32
54 * bytes.
55 *
56 * The controller has certain limitations that are handled by the
57 * driver:
58 * - It can only read 2k at a time. To overcome this limitation, the
59 * driver issues data cycles on the bus, without issuing new
60 * CMD + ADDR cycles. The Marvell term is "naked" operations.
61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16
62 * bits. What can be tuned is the ECC block size as long as it
63 * stays between 512B and 2kiB. It's usually chosen based on the
64 * chip ECC requirements. For instance, using 2kiB ECC chunks
65 * provides 4b/512B correctability.
66 * - The controller will always treat data bytes, free OOB bytes
67 * and ECC bytes in that order, no matter what the real layout is
68 * (which is usually all data then all OOB bytes). The
69 * marvell_nfc_layouts array below contains the currently
70 * supported layouts.
71 * - Because of these weird layouts, the Bad Block Markers can be
72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM
73 * option must be set to prevent scanning/writing bad block
74 * markers.
Miquel Raynal02f26ec2018-01-09 11:36:33 +010075 */
76
77#include <linux/module.h>
78#include <linux/clk.h>
79#include <linux/mtd/rawnand.h>
80#include <linux/of_platform.h>
81#include <linux/iopoll.h>
82#include <linux/interrupt.h>
83#include <linux/slab.h>
84#include <linux/mfd/syscon.h>
85#include <linux/regmap.h>
86#include <asm/unaligned.h>
87
88#include <linux/dmaengine.h>
89#include <linux/dma-mapping.h>
90#include <linux/dma/pxa-dma.h>
91#include <linux/platform_data/mtd-nand-pxa3xx.h>
92
93/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
94#define FIFO_DEPTH 8
95#define FIFO_REP(x) (x / sizeof(u32))
96#define BCH_SEQ_READS (32 / FIFO_DEPTH)
97/* NFC does not support transfers of larger chunks at a time */
98#define MAX_CHUNK_SIZE 2112
99/* NFCv1 cannot read more that 7 bytes of ID */
100#define NFCV1_READID_LEN 7
101/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
102#define POLL_PERIOD 0
103#define POLL_TIMEOUT 100000
104/* Interrupt maximum wait period in ms */
105#define IRQ_TIMEOUT 1000
106/* Latency in clock cycles between SoC pins and NFC logic */
107#define MIN_RD_DEL_CNT 3
108/* Maximum number of contiguous address cycles */
109#define MAX_ADDRESS_CYC_NFCV1 5
110#define MAX_ADDRESS_CYC_NFCV2 7
111/* System control registers/bits to enable the NAND controller on some SoCs */
112#define GENCONF_SOC_DEVICE_MUX 0x208
113#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
114#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
115#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
116#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
117#define GENCONF_CLK_GATING_CTRL 0x220
118#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
119#define GENCONF_ND_CLK_CTRL 0x700
120#define GENCONF_ND_CLK_CTRL_EN BIT(0)
121
122/* NAND controller data flash control register */
123#define NDCR 0x00
124#define NDCR_ALL_INT GENMASK(11, 0)
125#define NDCR_CS1_CMDDM BIT(7)
126#define NDCR_CS0_CMDDM BIT(8)
127#define NDCR_RDYM BIT(11)
128#define NDCR_ND_ARB_EN BIT(12)
129#define NDCR_RA_START BIT(15)
130#define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
131#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
132#define NDCR_DWIDTH_M BIT(26)
133#define NDCR_DWIDTH_C BIT(27)
134#define NDCR_ND_RUN BIT(28)
135#define NDCR_DMA_EN BIT(29)
136#define NDCR_ECC_EN BIT(30)
137#define NDCR_SPARE_EN BIT(31)
138#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
139 NDCR_DWIDTH_M | NDCR_DWIDTH_C))
140
141/* NAND interface timing parameter 0 register */
142#define NDTR0 0x04
143#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
144#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
145#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
146#define NDTR0_SEL_NRE_EDGE BIT(7)
147#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
148#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
149#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
150#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
151#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
152#define NDTR0_SELCNTR BIT(26)
153#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
154
155/* NAND interface timing parameter 1 register */
156#define NDTR1 0x0C
157#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
158#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
159#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
160#define NDTR1_PRESCALE BIT(14)
161#define NDTR1_WAIT_MODE BIT(15)
162#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
163
164/* NAND controller status register */
165#define NDSR 0x14
166#define NDSR_WRCMDREQ BIT(0)
167#define NDSR_RDDREQ BIT(1)
168#define NDSR_WRDREQ BIT(2)
169#define NDSR_CORERR BIT(3)
170#define NDSR_UNCERR BIT(4)
171#define NDSR_CMDD(cs) BIT(8 - cs)
172#define NDSR_RDY(rb) BIT(11 + rb)
173#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
174
175/* NAND ECC control register */
176#define NDECCCTRL 0x28
177#define NDECCCTRL_BCH_EN BIT(0)
178
179/* NAND controller data buffer register */
180#define NDDB 0x40
181
182/* NAND controller command buffer 0 register */
183#define NDCB0 0x48
184#define NDCB0_CMD1(x) ((x & 0xFF) << 0)
185#define NDCB0_CMD2(x) ((x & 0xFF) << 8)
186#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
187#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
188#define NDCB0_DBC BIT(19)
189#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
190#define NDCB0_CSEL BIT(24)
191#define NDCB0_RDY_BYP BIT(27)
192#define NDCB0_LEN_OVRD BIT(28)
193#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
194
195/* NAND controller command buffer 1 register */
196#define NDCB1 0x4C
197#define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
198#define NDCB1_ADDRS_PAGE(x) (x << 16)
199
200/* NAND controller command buffer 2 register */
201#define NDCB2 0x50
202#define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
203#define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
204
205/* NAND controller command buffer 3 register */
206#define NDCB3 0x54
207#define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
208#define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
209
210/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
211#define TYPE_READ 0
212#define TYPE_WRITE 1
213#define TYPE_ERASE 2
214#define TYPE_READ_ID 3
215#define TYPE_STATUS 4
216#define TYPE_RESET 5
217#define TYPE_NAKED_CMD 6
218#define TYPE_NAKED_ADDR 7
219#define TYPE_MASK 7
220#define XTYPE_MONOLITHIC_RW 0
221#define XTYPE_LAST_NAKED_RW 1
222#define XTYPE_FINAL_COMMAND 3
223#define XTYPE_READ 4
224#define XTYPE_WRITE_DISPATCH 4
225#define XTYPE_NAKED_RW 5
226#define XTYPE_COMMAND_DISPATCH 6
227#define XTYPE_MASK 7
228
229/**
230 * Marvell ECC engine works differently than the others, in order to limit the
231 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
232 * per subpage, and depending on a the desired strength needed by the NAND chip,
233 * a particular layout mixing data/spare/ecc is defined, with a possible last
234 * chunk smaller that the others.
235 *
236 * @writesize: Full page size on which the layout applies
237 * @chunk: Desired ECC chunk size on which the layout applies
238 * @strength: Desired ECC strength (per chunk size bytes) on which the
239 * layout applies
240 * @nchunks: Total number of chunks
241 * @full_chunk_cnt: Number of full-sized chunks, which is the number of
242 * repetitions of the pattern:
243 * (data_bytes + spare_bytes + ecc_bytes).
244 * @data_bytes: Number of data bytes per chunk
245 * @spare_bytes: Number of spare bytes per chunk
246 * @ecc_bytes: Number of ecc bytes per chunk
247 * @last_data_bytes: Number of data bytes in the last chunk
248 * @last_spare_bytes: Number of spare bytes in the last chunk
249 * @last_ecc_bytes: Number of ecc bytes in the last chunk
250 */
251struct marvell_hw_ecc_layout {
252 /* Constraints */
253 int writesize;
254 int chunk;
255 int strength;
256 /* Corresponding layout */
257 int nchunks;
258 int full_chunk_cnt;
259 int data_bytes;
260 int spare_bytes;
261 int ecc_bytes;
262 int last_data_bytes;
263 int last_spare_bytes;
264 int last_ecc_bytes;
265};
266
267#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
268 { \
269 .writesize = ws, \
270 .chunk = dc, \
271 .strength = ds, \
272 .nchunks = nc, \
273 .full_chunk_cnt = fcc, \
274 .data_bytes = db, \
275 .spare_bytes = sb, \
276 .ecc_bytes = eb, \
277 .last_data_bytes = ldb, \
278 .last_spare_bytes = lsb, \
279 .last_ecc_bytes = leb, \
280 }
281
282/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
283static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
284 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
285 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
286 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
Miquel Raynal7fd130f2018-07-19 12:21:19 +0200287 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30),
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100288 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
289 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
Konstantin Porotchkine8237bf2018-09-07 16:34:36 +0200290 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0),
291 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30),
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100292};
293
294/**
295 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
296 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
297 * The datasheet describes the logic with an error: ADDR5 field is once
298 * declared at the beginning of NDCB2, and another time at its end. Because the
299 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
300 * to use the last bit of this field instead of the first ones.
301 *
302 * @cs: Wanted CE lane.
303 * @ndcb0_csel: Value of the NDCB0 register with or without the flag
304 * selecting the wanted CE lane. This is set once when
305 * the Device Tree is probed.
306 * @rb: Ready/Busy pin for the flash chip
307 */
308struct marvell_nand_chip_sel {
309 unsigned int cs;
310 u32 ndcb0_csel;
311 unsigned int rb;
312};
313
314/**
315 * NAND chip structure: stores NAND chip device related information
316 *
317 * @chip: Base NAND chip structure
318 * @node: Used to store NAND chips into a list
319 * @layout NAND layout when using hardware ECC
320 * @ndcr: Controller register value for this NAND chip
321 * @ndtr0: Timing registers 0 value for this NAND chip
322 * @ndtr1: Timing registers 1 value for this NAND chip
323 * @selected_die: Current active CS
324 * @nsels: Number of CS lines required by the NAND chip
325 * @sels: Array of CS lines descriptions
326 */
327struct marvell_nand_chip {
328 struct nand_chip chip;
329 struct list_head node;
330 const struct marvell_hw_ecc_layout *layout;
331 u32 ndcr;
332 u32 ndtr0;
333 u32 ndtr1;
334 int addr_cyc;
335 int selected_die;
336 unsigned int nsels;
337 struct marvell_nand_chip_sel sels[0];
338};
339
340static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
341{
342 return container_of(chip, struct marvell_nand_chip, chip);
343}
344
345static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
346 *nand)
347{
348 return &nand->sels[nand->selected_die];
349}
350
351/**
352 * NAND controller capabilities for distinction between compatible strings
353 *
354 * @max_cs_nb: Number of Chip Select lines available
355 * @max_rb_nb: Number of Ready/Busy lines available
356 * @need_system_controller: Indicates if the SoC needs to have access to the
357 * system controller (ie. to enable the NAND controller)
358 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
359 * fashion way
360 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
361 * BCH error detection and correction algorithm,
362 * NDCB3 register has been added
363 * @use_dma: Use dma for data transfers
364 */
365struct marvell_nfc_caps {
366 unsigned int max_cs_nb;
367 unsigned int max_rb_nb;
368 bool need_system_controller;
369 bool legacy_of_bindings;
370 bool is_nfcv2;
371 bool use_dma;
372};
373
374/**
375 * NAND controller structure: stores Marvell NAND controller information
376 *
377 * @controller: Base controller structure
378 * @dev: Parent device (used to print error messages)
379 * @regs: NAND controller registers
Boris Brezillon6b6de652018-03-26 11:53:01 +0200380 * @core_clk: Core clock
Miquel Raynal1b489ef2018-11-22 16:58:59 +0100381 * @reg_clk: Registers clock
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100382 * @complete: Completion object to wait for NAND controller events
383 * @assigned_cs: Bitmask describing already assigned CS lines
384 * @chips: List containing all the NAND chips attached to
385 * this NAND controller
386 * @caps: NAND controller capabilities for each compatible string
387 * @dma_chan: DMA channel (NFCv1 only)
388 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
389 */
390struct marvell_nfc {
Miquel Raynal7da45132018-07-17 09:08:02 +0200391 struct nand_controller controller;
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100392 struct device *dev;
393 void __iomem *regs;
Boris Brezillon6b6de652018-03-26 11:53:01 +0200394 struct clk *core_clk;
Gregory CLEMENT961ba152018-03-13 11:30:16 +0100395 struct clk *reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100396 struct completion complete;
397 unsigned long assigned_cs;
398 struct list_head chips;
399 struct nand_chip *selected_chip;
400 const struct marvell_nfc_caps *caps;
401
402 /* DMA (NFCv1 only) */
403 bool use_dma;
404 struct dma_chan *dma_chan;
405 u8 *dma_buf;
406};
407
Miquel Raynal7da45132018-07-17 09:08:02 +0200408static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100409{
410 return container_of(ctrl, struct marvell_nfc, controller);
411}
412
413/**
414 * NAND controller timings expressed in NAND Controller clock cycles
415 *
416 * @tRP: ND_nRE pulse width
417 * @tRH: ND_nRE high duration
418 * @tWP: ND_nWE pulse time
419 * @tWH: ND_nWE high duration
420 * @tCS: Enable signal setup time
421 * @tCH: Enable signal hold time
422 * @tADL: Address to write data delay
423 * @tAR: ND_ALE low to ND_nRE low delay
424 * @tWHR: ND_nWE high to ND_nRE low for status read
425 * @tRHW: ND_nRE high duration, read to write delay
426 * @tR: ND_nWE high to ND_nRE low for read
427 */
428struct marvell_nfc_timings {
429 /* NDTR0 fields */
430 unsigned int tRP;
431 unsigned int tRH;
432 unsigned int tWP;
433 unsigned int tWH;
434 unsigned int tCS;
435 unsigned int tCH;
436 unsigned int tADL;
437 /* NDTR1 fields */
438 unsigned int tAR;
439 unsigned int tWHR;
440 unsigned int tRHW;
441 unsigned int tR;
442};
443
444/**
445 * Derives a duration in numbers of clock cycles.
446 *
447 * @ps: Duration in pico-seconds
448 * @period_ns: Clock period in nano-seconds
449 *
450 * Convert the duration in nano-seconds, then divide by the period and
451 * return the number of clock periods.
452 */
453#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
Miquel Raynal07ad5a72018-01-17 00:19:34 +0100454#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
455 period_ns))
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100456
457/**
458 * NAND driver structure filled during the parsing of the ->exec_op() subop
459 * subset of instructions.
460 *
461 * @ndcb: Array of values written to NDCBx registers
462 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
463 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
464 * @rdy_delay_ns: Optional delay after waiting for the RB pin
465 * @data_delay_ns: Optional delay after the data xfer
466 * @data_instr_idx: Index of the data instruction in the subop
467 * @data_instr: Pointer to the data instruction in the subop
468 */
469struct marvell_nfc_op {
470 u32 ndcb[4];
471 unsigned int cle_ale_delay_ns;
472 unsigned int rdy_timeout_ms;
473 unsigned int rdy_delay_ns;
474 unsigned int data_delay_ns;
475 unsigned int data_instr_idx;
476 const struct nand_op_instr *data_instr;
477};
478
479/*
480 * Internal helper to conditionnally apply a delay (from the above structure,
481 * most of the time).
482 */
483static void cond_delay(unsigned int ns)
484{
485 if (!ns)
486 return;
487
488 if (ns < 10000)
489 ndelay(ns);
490 else
491 udelay(DIV_ROUND_UP(ns, 1000));
492}
493
494/*
495 * The controller has many flags that could generate interrupts, most of them
496 * are disabled and polling is used. For the very slow signals, using interrupts
497 * may relax the CPU charge.
498 */
499static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
500{
501 u32 reg;
502
503 /* Writing 1 disables the interrupt */
504 reg = readl_relaxed(nfc->regs + NDCR);
505 writel_relaxed(reg | int_mask, nfc->regs + NDCR);
506}
507
508static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
509{
510 u32 reg;
511
512 /* Writing 0 enables the interrupt */
513 reg = readl_relaxed(nfc->regs + NDCR);
514 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
515}
516
Miquel Raynalcafb56dd2018-12-11 18:38:28 +0100517static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100518{
Miquel Raynalcafb56dd2018-12-11 18:38:28 +0100519 u32 reg;
520
521 reg = readl_relaxed(nfc->regs + NDSR);
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100522 writel_relaxed(int_mask, nfc->regs + NDSR);
Miquel Raynalcafb56dd2018-12-11 18:38:28 +0100523
524 return reg & int_mask;
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100525}
526
527static void marvell_nfc_force_byte_access(struct nand_chip *chip,
528 bool force_8bit)
529{
530 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
531 u32 ndcr;
532
533 /*
534 * Callers of this function do not verify if the NAND is using a 16-bit
535 * an 8-bit bus for normal operations, so we need to take care of that
536 * here by leaving the configuration unchanged if the NAND does not have
537 * the NAND_BUSWIDTH_16 flag set.
538 */
539 if (!(chip->options & NAND_BUSWIDTH_16))
540 return;
541
542 ndcr = readl_relaxed(nfc->regs + NDCR);
543
544 if (force_8bit)
545 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
546 else
547 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
548
549 writel_relaxed(ndcr, nfc->regs + NDCR);
550}
551
552static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
553{
554 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
555 u32 val;
556 int ret;
557
558 /*
559 * The command is being processed, wait for the ND_RUN bit to be
560 * cleared by the NFC. If not, we must clear it by hand.
561 */
562 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
563 (val & NDCR_ND_RUN) == 0,
564 POLL_PERIOD, POLL_TIMEOUT);
565 if (ret) {
566 dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
567 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
568 nfc->regs + NDCR);
569 return ret;
570 }
571
572 return 0;
573}
574
575/*
576 * Any time a command has to be sent to the controller, the following sequence
577 * has to be followed:
578 * - call marvell_nfc_prepare_cmd()
579 * -> activate the ND_RUN bit that will kind of 'start a job'
580 * -> wait the signal indicating the NFC is waiting for a command
581 * - send the command (cmd and address cycles)
582 * - enventually send or receive the data
583 * - call marvell_nfc_end_cmd() with the corresponding flag
584 * -> wait the flag to be triggered or cancel the job with a timeout
585 *
586 * The following helpers are here to factorize the code a bit so that
587 * specialized functions responsible for executing the actual NAND
588 * operations do not have to replicate the same code blocks.
589 */
590static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
591{
592 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
593 u32 ndcr, val;
594 int ret;
595
596 /* Poll ND_RUN and clear NDSR before issuing any command */
597 ret = marvell_nfc_wait_ndrun(chip);
598 if (ret) {
Colin Ian Kinga76497d2018-01-19 07:55:31 +0000599 dev_err(nfc->dev, "Last operation did not succeed\n");
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100600 return ret;
601 }
602
603 ndcr = readl_relaxed(nfc->regs + NDCR);
604 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
605
606 /* Assert ND_RUN bit and wait the NFC to be ready */
607 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
608 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
609 val & NDSR_WRCMDREQ,
610 POLL_PERIOD, POLL_TIMEOUT);
611 if (ret) {
612 dev_err(nfc->dev, "Timeout on WRCMDRE\n");
613 return -ETIMEDOUT;
614 }
615
616 /* Command may be written, clear WRCMDREQ status bit */
617 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
618
619 return 0;
620}
621
622static void marvell_nfc_send_cmd(struct nand_chip *chip,
623 struct marvell_nfc_op *nfc_op)
624{
625 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
626 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
627
628 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
629 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
630 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
631 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
632
633 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
634 nfc->regs + NDCB0);
635 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
636 writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
637
638 /*
639 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
640 * fields are used (only available on NFCv2).
641 */
642 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
643 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
644 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
645 writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
646 }
647}
648
649static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
650 const char *label)
651{
652 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
653 u32 val;
654 int ret;
655
656 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
657 val & flag,
658 POLL_PERIOD, POLL_TIMEOUT);
659
660 if (ret) {
661 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
662 label, val);
663 if (nfc->dma_chan)
664 dmaengine_terminate_all(nfc->dma_chan);
665 return ret;
666 }
667
668 /*
669 * DMA function uses this helper to poll on CMDD bits without wanting
670 * them to be cleared.
671 */
672 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
673 return 0;
674
675 writel_relaxed(flag, nfc->regs + NDSR);
676
677 return 0;
678}
679
680static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
681{
682 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
683 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
684
685 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
686}
687
688static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
689{
690 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
Miquel Raynalcafb56dd2018-12-11 18:38:28 +0100691 u32 pending;
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100692 int ret;
693
694 /* Timeout is expressed in ms */
695 if (!timeout_ms)
696 timeout_ms = IRQ_TIMEOUT;
697
698 init_completion(&nfc->complete);
699
700 marvell_nfc_enable_int(nfc, NDCR_RDYM);
701 ret = wait_for_completion_timeout(&nfc->complete,
702 msecs_to_jiffies(timeout_ms));
703 marvell_nfc_disable_int(nfc, NDCR_RDYM);
Miquel Raynalcafb56dd2018-12-11 18:38:28 +0100704 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
705
706 /*
707 * In case the interrupt was not served in the required time frame,
708 * check if the ISR was not served or if something went actually wrong.
709 */
710 if (ret && !pending) {
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100711 dev_err(nfc->dev, "Timeout waiting for RB signal\n");
712 return -ETIMEDOUT;
713 }
714
715 return 0;
716}
717
Boris Brezillonb2525142018-11-11 08:55:18 +0100718static void marvell_nfc_select_target(struct nand_chip *chip,
719 unsigned int die_nr)
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100720{
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100721 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
722 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
723 u32 ndcr_generic;
724
725 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
726 return;
727
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100728 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
729 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
730
731 /*
732 * Reset the NDCR register to a clean state for this particular chip,
733 * also clear ND_RUN bit.
734 */
735 ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
736 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
737 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
738
739 /* Also reset the interrupt status register */
740 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
741
742 nfc->selected_chip = chip;
743 marvell_nand->selected_die = die_nr;
744}
745
746static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
747{
748 struct marvell_nfc *nfc = dev_id;
749 u32 st = readl_relaxed(nfc->regs + NDSR);
750 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
751
752 /*
753 * RDY interrupt mask is one bit in NDCR while there are two status
754 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
755 */
756 if (st & NDSR_RDY(1))
757 st |= NDSR_RDY(0);
758
759 if (!(st & ien))
760 return IRQ_NONE;
761
762 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
763
Miquel Raynal53c83b52018-10-03 11:05:04 +0200764 if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
Miquel Raynal02f26ec2018-01-09 11:36:33 +0100765 complete(&nfc->complete);
766
767 return IRQ_HANDLED;
768}
769
770/* HW ECC related functions */
771static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
772{
773 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
774 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
775
776 if (!(ndcr & NDCR_ECC_EN)) {
777 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
778
779 /*
780 * When enabling BCH, set threshold to 0 to always know the
781 * number of corrected bitflips.
782 */
783 if (chip->ecc.algo == NAND_ECC_BCH)
784 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
785 }
786}
787
788static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
789{
790 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
791 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
792
793 if (ndcr & NDCR_ECC_EN) {
794 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
795 if (chip->ecc.algo == NAND_ECC_BCH)
796 writel_relaxed(0, nfc->regs + NDECCCTRL);
797 }
798}
799
800/* DMA related helpers */
801static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
802{
803 u32 reg;
804
805 reg = readl_relaxed(nfc->regs + NDCR);
806 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
807}
808
809static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
810{
811 u32 reg;
812
813 reg = readl_relaxed(nfc->regs + NDCR);
814 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
815}
816
817/* Read/write PIO/DMA accessors */
818static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
819 enum dma_data_direction direction,
820 unsigned int len)
821{
822 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
823 struct dma_async_tx_descriptor *tx;
824 struct scatterlist sg;
825 dma_cookie_t cookie;
826 int ret;
827
828 marvell_nfc_enable_dma(nfc);
829 /* Prepare the DMA transfer */
830 sg_init_one(&sg, nfc->dma_buf, dma_len);
831 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
832 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
833 direction == DMA_FROM_DEVICE ?
834 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
835 DMA_PREP_INTERRUPT);
836 if (!tx) {
837 dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
838 return -ENXIO;
839 }
840
841 /* Do the task and wait for it to finish */
842 cookie = dmaengine_submit(tx);
843 ret = dma_submit_error(cookie);
844 if (ret)
845 return -EIO;
846
847 dma_async_issue_pending(nfc->dma_chan);
848 ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
849 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
850 marvell_nfc_disable_dma(nfc);
851 if (ret) {
852 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
853 dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
854 dmaengine_terminate_all(nfc->dma_chan);
855 return -ETIMEDOUT;
856 }
857
858 return 0;
859}
860
861static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
862 unsigned int len)
863{
864 unsigned int last_len = len % FIFO_DEPTH;
865 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
866 int i;
867
868 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
869 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
870
871 if (last_len) {
872 u8 tmp_buf[FIFO_DEPTH];
873
874 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
875 memcpy(in + last_full_offset, tmp_buf, last_len);
876 }
877
878 return 0;
879}
880
881static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
882 unsigned int len)
883{
884 unsigned int last_len = len % FIFO_DEPTH;
885 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
886 int i;
887
888 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
889 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
890
891 if (last_len) {
892 u8 tmp_buf[FIFO_DEPTH];
893
894 memcpy(tmp_buf, out + last_full_offset, last_len);
895 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
896 }
897
898 return 0;
899}
900
901static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
902 u8 *data, int data_len,
903 u8 *spare, int spare_len,
904 u8 *ecc, int ecc_len,
905 unsigned int *max_bitflips)
906{
907 struct mtd_info *mtd = nand_to_mtd(chip);
908 int bf;
909
910 /*
911 * Blank pages (all 0xFF) that have not been written may be recognized
912 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
913 * check if the entire page (with ECC bytes) is actually blank or not.
914 */
915 if (!data)
916 data_len = 0;
917 if (!spare)
918 spare_len = 0;
919 if (!ecc)
920 ecc_len = 0;
921
922 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
923 spare, spare_len, chip->ecc.strength);
924 if (bf < 0) {
925 mtd->ecc_stats.failed++;
926 return;
927 }
928
929 /* Update the stats and max_bitflips */
930 mtd->ecc_stats.corrected += bf;
931 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
932}
933
934/*
935 * Check a chunk is correct or not according to hardware ECC engine.
936 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
937 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
938 * value indicating that a check on the emptyness of the subpage must be
939 * performed before declaring the subpage corrupted.
940 */
941static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
942 unsigned int *max_bitflips)
943{
944 struct mtd_info *mtd = nand_to_mtd(chip);
945 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
946 int bf = 0;
947 u32 ndsr;
948
949 ndsr = readl_relaxed(nfc->regs + NDSR);
950
951 /* Check uncorrectable error flag */
952 if (ndsr & NDSR_UNCERR) {
953 writel_relaxed(ndsr, nfc->regs + NDSR);
954
955 /*
956 * Do not increment ->ecc_stats.failed now, instead, return a
957 * non-zero value to indicate that this chunk was apparently
958 * bad, and it should be check to see if it empty or not. If
959 * the chunk (with ECC bytes) is not declared empty, the calling
960 * function must increment the failure count.
961 */
962 return -EBADMSG;
963 }
964
965 /* Check correctable error flag */
966 if (ndsr & NDSR_CORERR) {
967 writel_relaxed(ndsr, nfc->regs + NDSR);
968
969 if (chip->ecc.algo == NAND_ECC_BCH)
970 bf = NDSR_ERRCNT(ndsr);
971 else
972 bf = 1;
973 }
974
975 /* Update the stats and max_bitflips */
976 mtd->ecc_stats.corrected += bf;
977 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
978
979 return 0;
980}
981
982/* Hamming read helpers */
983static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
984 u8 *data_buf, u8 *oob_buf,
985 bool raw, int page)
986{
987 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
988 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
989 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
990 struct marvell_nfc_op nfc_op = {
991 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
992 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
993 NDCB0_DBC |
994 NDCB0_CMD1(NAND_CMD_READ0) |
995 NDCB0_CMD2(NAND_CMD_READSTART),
996 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
997 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
998 };
999 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1000 int ret;
1001
1002 /* NFCv2 needs more information about the operation being executed */
1003 if (nfc->caps->is_nfcv2)
1004 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1005
1006 ret = marvell_nfc_prepare_cmd(chip);
1007 if (ret)
1008 return ret;
1009
1010 marvell_nfc_send_cmd(chip, &nfc_op);
1011 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1012 "RDDREQ while draining FIFO (data/oob)");
1013 if (ret)
1014 return ret;
1015
1016 /*
1017 * Read the page then the OOB area. Unlike what is shown in current
1018 * documentation, spare bytes are protected by the ECC engine, and must
1019 * be at the beginning of the OOB area or running this driver on legacy
1020 * systems will prevent the discovery of the BBM/BBT.
1021 */
1022 if (nfc->use_dma) {
1023 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
1024 lt->data_bytes + oob_bytes);
1025 memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
1026 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
1027 } else {
1028 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
1029 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
1030 }
1031
1032 ret = marvell_nfc_wait_cmdd(chip);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001033 return ret;
1034}
1035
Boris Brezillonb9761682018-09-06 14:05:20 +02001036static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001037 int oob_required, int page)
1038{
Boris Brezillonb2525142018-11-11 08:55:18 +01001039 marvell_nfc_select_target(chip, chip->cur_cs);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001040 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1041 true, page);
1042}
1043
Boris Brezillonb9761682018-09-06 14:05:20 +02001044static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
1045 int oob_required, int page)
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001046{
1047 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1048 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1049 int max_bitflips = 0, ret;
1050 u8 *raw_buf;
1051
Boris Brezillonb2525142018-11-11 08:55:18 +01001052 marvell_nfc_select_target(chip, chip->cur_cs);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001053 marvell_nfc_enable_hw_ecc(chip);
1054 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
1055 page);
1056 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1057 marvell_nfc_disable_hw_ecc(chip);
1058
1059 if (!ret)
1060 return max_bitflips;
1061
1062 /*
1063 * When ECC failures are detected, check if the full page has been
1064 * written or not. Ignore the failure if it is actually empty.
1065 */
1066 raw_buf = kmalloc(full_sz, GFP_KERNEL);
1067 if (!raw_buf)
1068 return -ENOMEM;
1069
1070 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1071 lt->data_bytes, true, page);
1072 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1073 &max_bitflips);
1074 kfree(raw_buf);
1075
1076 return max_bitflips;
1077}
1078
1079/*
1080 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1081 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1082 * also stands for ->read_oob().
1083 */
Boris Brezillonb9761682018-09-06 14:05:20 +02001084static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001085{
1086 /* Invalidate page cache */
1087 chip->pagebuf = -1;
1088
Boris Brezillonb2525142018-11-11 08:55:18 +01001089 marvell_nfc_select_target(chip, chip->cur_cs);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001090 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
1091 chip->oob_poi, true, page);
1092}
1093
1094/* Hamming write helpers */
1095static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1096 const u8 *data_buf,
1097 const u8 *oob_buf, bool raw,
1098 int page)
1099{
1100 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1101 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1102 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1103 struct marvell_nfc_op nfc_op = {
1104 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1105 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1106 NDCB0_CMD1(NAND_CMD_SEQIN) |
1107 NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1108 NDCB0_DBC,
1109 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1110 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1111 };
1112 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1113 int ret;
1114
1115 /* NFCv2 needs more information about the operation being executed */
1116 if (nfc->caps->is_nfcv2)
1117 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1118
1119 ret = marvell_nfc_prepare_cmd(chip);
1120 if (ret)
1121 return ret;
1122
1123 marvell_nfc_send_cmd(chip, &nfc_op);
1124 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1125 "WRDREQ while loading FIFO (data)");
1126 if (ret)
1127 return ret;
1128
1129 /* Write the page then the OOB area */
1130 if (nfc->use_dma) {
1131 memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1132 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1133 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1134 lt->ecc_bytes + lt->spare_bytes);
1135 } else {
1136 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1137 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1138 }
1139
1140 ret = marvell_nfc_wait_cmdd(chip);
1141 if (ret)
1142 return ret;
1143
1144 ret = marvell_nfc_wait_op(chip,
Chris Packhamb76401f2018-05-03 14:21:28 +12001145 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001146 return ret;
1147}
1148
Boris Brezillon767eb6f2018-09-06 14:05:21 +02001149static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001150 const u8 *buf,
1151 int oob_required, int page)
1152{
Boris Brezillonb2525142018-11-11 08:55:18 +01001153 marvell_nfc_select_target(chip, chip->cur_cs);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001154 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1155 true, page);
1156}
1157
Boris Brezillon767eb6f2018-09-06 14:05:21 +02001158static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001159 const u8 *buf,
1160 int oob_required, int page)
1161{
1162 int ret;
1163
Boris Brezillonb2525142018-11-11 08:55:18 +01001164 marvell_nfc_select_target(chip, chip->cur_cs);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001165 marvell_nfc_enable_hw_ecc(chip);
1166 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1167 false, page);
1168 marvell_nfc_disable_hw_ecc(chip);
1169
1170 return ret;
1171}
1172
1173/*
1174 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1175 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1176 * also stands for ->write_oob().
1177 */
Boris Brezillon767eb6f2018-09-06 14:05:21 +02001178static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001179 int page)
1180{
Boris Brezillon767eb6f2018-09-06 14:05:21 +02001181 struct mtd_info *mtd = nand_to_mtd(chip);
1182
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001183 /* Invalidate page cache */
1184 chip->pagebuf = -1;
1185
1186 memset(chip->data_buf, 0xFF, mtd->writesize);
1187
Boris Brezillonb2525142018-11-11 08:55:18 +01001188 marvell_nfc_select_target(chip, chip->cur_cs);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001189 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
1190 chip->oob_poi, true, page);
1191}
1192
1193/* BCH read helpers */
Boris Brezillonb9761682018-09-06 14:05:20 +02001194static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001195 int oob_required, int page)
1196{
Boris Brezillonb9761682018-09-06 14:05:20 +02001197 struct mtd_info *mtd = nand_to_mtd(chip);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001198 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1199 u8 *oob = chip->oob_poi;
1200 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1201 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1202 lt->last_spare_bytes;
1203 int data_len = lt->data_bytes;
1204 int spare_len = lt->spare_bytes;
1205 int ecc_len = lt->ecc_bytes;
1206 int chunk;
1207
Boris Brezillonb2525142018-11-11 08:55:18 +01001208 marvell_nfc_select_target(chip, chip->cur_cs);
1209
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001210 if (oob_required)
1211 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1212
1213 nand_read_page_op(chip, page, 0, NULL, 0);
1214
1215 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1216 /* Update last chunk length */
1217 if (chunk >= lt->full_chunk_cnt) {
1218 data_len = lt->last_data_bytes;
1219 spare_len = lt->last_spare_bytes;
1220 ecc_len = lt->last_ecc_bytes;
1221 }
1222
1223 /* Read data bytes*/
1224 nand_change_read_column_op(chip, chunk * chunk_size,
1225 buf + (lt->data_bytes * chunk),
1226 data_len, false);
1227
1228 /* Read spare bytes */
1229 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1230 spare_len, false);
1231
1232 /* Read ECC bytes */
1233 nand_read_data_op(chip, oob + ecc_offset +
1234 (ALIGN(lt->ecc_bytes, 32) * chunk),
1235 ecc_len, false);
1236 }
1237
1238 return 0;
1239}
1240
1241static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1242 u8 *data, unsigned int data_len,
1243 u8 *spare, unsigned int spare_len,
1244 int page)
1245{
1246 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1247 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1248 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1249 int i, ret;
1250 struct marvell_nfc_op nfc_op = {
1251 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1252 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1253 NDCB0_LEN_OVRD,
1254 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1255 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1256 .ndcb[3] = data_len + spare_len,
1257 };
1258
1259 ret = marvell_nfc_prepare_cmd(chip);
1260 if (ret)
1261 return;
1262
1263 if (chunk == 0)
1264 nfc_op.ndcb[0] |= NDCB0_DBC |
1265 NDCB0_CMD1(NAND_CMD_READ0) |
1266 NDCB0_CMD2(NAND_CMD_READSTART);
1267
1268 /*
Boris Brezillon90d61762018-05-09 09:13:58 +02001269 * Trigger the monolithic read on the first chunk, then naked read on
1270 * intermediate chunks and finally a last naked read on the last chunk.
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001271 */
Boris Brezillon90d61762018-05-09 09:13:58 +02001272 if (chunk == 0)
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001273 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
Boris Brezillon90d61762018-05-09 09:13:58 +02001274 else if (chunk < lt->nchunks - 1)
1275 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001276 else
1277 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1278
1279 marvell_nfc_send_cmd(chip, &nfc_op);
1280
1281 /*
1282 * According to the datasheet, when reading from NDDB
1283 * with BCH enabled, after each 32 bytes reads, we
1284 * have to make sure that the NDSR.RDDREQ bit is set.
1285 *
1286 * Drain the FIFO, 8 32-bit reads at a time, and skip
1287 * the polling on the last read.
1288 *
1289 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1290 */
1291 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1292 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1293 "RDDREQ while draining FIFO (data)");
1294 marvell_nfc_xfer_data_in_pio(nfc, data,
1295 FIFO_DEPTH * BCH_SEQ_READS);
1296 data += FIFO_DEPTH * BCH_SEQ_READS;
1297 }
1298
1299 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1300 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1301 "RDDREQ while draining FIFO (OOB)");
1302 marvell_nfc_xfer_data_in_pio(nfc, spare,
1303 FIFO_DEPTH * BCH_SEQ_READS);
1304 spare += FIFO_DEPTH * BCH_SEQ_READS;
1305 }
1306}
1307
Boris Brezillonb9761682018-09-06 14:05:20 +02001308static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001309 u8 *buf, int oob_required,
1310 int page)
1311{
Boris Brezillonb9761682018-09-06 14:05:20 +02001312 struct mtd_info *mtd = nand_to_mtd(chip);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001313 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
Miquel Raynaldbfc6712018-07-19 16:54:23 +02001314 int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
1315 u8 *data = buf, *spare = chip->oob_poi;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001316 int max_bitflips = 0;
1317 u32 failure_mask = 0;
Miquel Raynaldbfc6712018-07-19 16:54:23 +02001318 int chunk, ret;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001319
Boris Brezillonb2525142018-11-11 08:55:18 +01001320 marvell_nfc_select_target(chip, chip->cur_cs);
1321
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001322 /*
1323 * With BCH, OOB is not fully used (and thus not read entirely), not
1324 * expected bytes could show up at the end of the OOB buffer if not
1325 * explicitly erased.
1326 */
1327 if (oob_required)
1328 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1329
1330 marvell_nfc_enable_hw_ecc(chip);
1331
1332 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1333 /* Update length for the last chunk */
1334 if (chunk >= lt->full_chunk_cnt) {
1335 data_len = lt->last_data_bytes;
1336 spare_len = lt->last_spare_bytes;
1337 }
1338
1339 /* Read the chunk and detect number of bitflips */
1340 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1341 spare, spare_len, page);
1342 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1343 if (ret)
1344 failure_mask |= BIT(chunk);
1345
1346 data += data_len;
1347 spare += spare_len;
1348 }
1349
1350 marvell_nfc_disable_hw_ecc(chip);
1351
1352 if (!failure_mask)
1353 return max_bitflips;
1354
1355 /*
1356 * Please note that dumping the ECC bytes during a normal read with OOB
1357 * area would add a significant overhead as ECC bytes are "consumed" by
1358 * the controller in normal mode and must be re-read in raw mode. To
1359 * avoid dropping the performances, we prefer not to include them. The
1360 * user should re-read the page in raw mode if ECC bytes are required.
Miquel Raynaldbfc6712018-07-19 16:54:23 +02001361 */
1362
1363 /*
1364 * In case there is any subpage read error reported by ->correct(), we
1365 * usually re-read only ECC bytes in raw mode and check if the whole
1366 * page is empty. In this case, it is normal that the ECC check failed
1367 * and we just ignore the error.
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001368 *
Miquel Raynal7fd130f2018-07-19 12:21:19 +02001369 * However, it has been empirically observed that for some layouts (e.g
1370 * 2k page, 8b strength per 512B chunk), the controller tries to correct
1371 * bits and may create itself bitflips in the erased area. To overcome
1372 * this strange behavior, the whole page is re-read in raw mode, not
1373 * only the ECC bytes.
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001374 */
1375 for (chunk = 0; chunk < lt->nchunks; chunk++) {
Miquel Raynaldbfc6712018-07-19 16:54:23 +02001376 int data_off_in_page, spare_off_in_page, ecc_off_in_page;
1377 int data_off, spare_off, ecc_off;
1378 int data_len, spare_len, ecc_len;
1379
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001380 /* No failure reported for this chunk, move to the next one */
1381 if (!(failure_mask & BIT(chunk)))
1382 continue;
1383
Miquel Raynaldbfc6712018-07-19 16:54:23 +02001384 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
1385 lt->ecc_bytes);
1386 spare_off_in_page = data_off_in_page +
1387 (chunk < lt->full_chunk_cnt ? lt->data_bytes :
1388 lt->last_data_bytes);
1389 ecc_off_in_page = spare_off_in_page +
1390 (chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1391 lt->last_spare_bytes);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001392
Miquel Raynaldbfc6712018-07-19 16:54:23 +02001393 data_off = chunk * lt->data_bytes;
1394 spare_off = chunk * lt->spare_bytes;
1395 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
1396 lt->last_spare_bytes +
1397 (chunk * (lt->ecc_bytes + 2));
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001398
Miquel Raynaldbfc6712018-07-19 16:54:23 +02001399 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
1400 lt->last_data_bytes;
1401 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1402 lt->last_spare_bytes;
1403 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
1404 lt->last_ecc_bytes;
1405
Miquel Raynal7fd130f2018-07-19 12:21:19 +02001406 /*
1407 * Only re-read the ECC bytes, unless we are using the 2k/8b
1408 * layout which is buggy in the sense that the ECC engine will
1409 * try to correct data bytes anyway, creating bitflips. In this
1410 * case, re-read the entire page.
1411 */
1412 if (lt->writesize == 2048 && lt->strength == 8) {
1413 nand_change_read_column_op(chip, data_off_in_page,
1414 buf + data_off, data_len,
1415 false);
1416 nand_change_read_column_op(chip, spare_off_in_page,
1417 chip->oob_poi + spare_off, spare_len,
1418 false);
1419 }
1420
Miquel Raynaldbfc6712018-07-19 16:54:23 +02001421 nand_change_read_column_op(chip, ecc_off_in_page,
1422 chip->oob_poi + ecc_off, ecc_len,
1423 false);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001424
1425 /* Check the entire chunk (data + spare + ecc) for emptyness */
Miquel Raynaldbfc6712018-07-19 16:54:23 +02001426 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
1427 chip->oob_poi + spare_off, spare_len,
1428 chip->oob_poi + ecc_off, ecc_len,
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001429 &max_bitflips);
1430 }
1431
1432 return max_bitflips;
1433}
1434
Boris Brezillonb9761682018-09-06 14:05:20 +02001435static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001436{
1437 /* Invalidate page cache */
1438 chip->pagebuf = -1;
1439
Boris Brezillonb9761682018-09-06 14:05:20 +02001440 return chip->ecc.read_page_raw(chip, chip->data_buf, true, page);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001441}
1442
Boris Brezillonb9761682018-09-06 14:05:20 +02001443static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001444{
1445 /* Invalidate page cache */
1446 chip->pagebuf = -1;
1447
Boris Brezillonb9761682018-09-06 14:05:20 +02001448 return chip->ecc.read_page(chip, chip->data_buf, true, page);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001449}
1450
1451/* BCH write helpers */
Boris Brezillon767eb6f2018-09-06 14:05:21 +02001452static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001453 const u8 *buf,
1454 int oob_required, int page)
1455{
1456 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1457 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1458 int data_len = lt->data_bytes;
1459 int spare_len = lt->spare_bytes;
1460 int ecc_len = lt->ecc_bytes;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001461 int spare_offset = 0;
1462 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1463 lt->last_spare_bytes;
1464 int chunk;
1465
Boris Brezillonb2525142018-11-11 08:55:18 +01001466 marvell_nfc_select_target(chip, chip->cur_cs);
1467
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001468 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1469
1470 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1471 if (chunk >= lt->full_chunk_cnt) {
1472 data_len = lt->last_data_bytes;
1473 spare_len = lt->last_spare_bytes;
1474 ecc_len = lt->last_ecc_bytes;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001475 }
1476
1477 /* Point to the column of the next chunk */
1478 nand_change_write_column_op(chip, chunk * full_chunk_size,
1479 NULL, 0, false);
1480
1481 /* Write the data */
1482 nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1483 data_len, false);
1484
1485 if (!oob_required)
1486 continue;
1487
1488 /* Write the spare bytes */
1489 if (spare_len)
1490 nand_write_data_op(chip, chip->oob_poi + spare_offset,
1491 spare_len, false);
1492
1493 /* Write the ECC bytes */
1494 if (ecc_len)
1495 nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1496 ecc_len, false);
1497
1498 spare_offset += spare_len;
1499 ecc_offset += ALIGN(ecc_len, 32);
1500 }
1501
1502 return nand_prog_page_end_op(chip);
1503}
1504
1505static int
1506marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1507 const u8 *data, unsigned int data_len,
1508 const u8 *spare, unsigned int spare_len,
1509 int page)
1510{
1511 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1512 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1513 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
Miquel Raynala2ee41f2018-05-03 12:00:27 +02001514 u32 xtype;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001515 int ret;
1516 struct marvell_nfc_op nfc_op = {
1517 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1518 .ndcb[3] = data_len + spare_len,
1519 };
1520
1521 /*
1522 * First operation dispatches the CMD_SEQIN command, issue the address
1523 * cycles and asks for the first chunk of data.
1524 * All operations in the middle (if any) will issue a naked write and
1525 * also ask for data.
1526 * Last operation (if any) asks for the last chunk of data through a
1527 * last naked write.
1528 */
1529 if (chunk == 0) {
Miquel Raynala2ee41f2018-05-03 12:00:27 +02001530 if (lt->nchunks == 1)
1531 xtype = XTYPE_MONOLITHIC_RW;
1532 else
1533 xtype = XTYPE_WRITE_DISPATCH;
1534
1535 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001536 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1537 NDCB0_CMD1(NAND_CMD_SEQIN);
1538 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1539 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1540 } else if (chunk < lt->nchunks - 1) {
1541 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1542 } else {
1543 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1544 }
1545
1546 /* Always dispatch the PAGEPROG command on the last chunk */
1547 if (chunk == lt->nchunks - 1)
1548 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1549
1550 ret = marvell_nfc_prepare_cmd(chip);
1551 if (ret)
1552 return ret;
1553
1554 marvell_nfc_send_cmd(chip, &nfc_op);
1555 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1556 "WRDREQ while loading FIFO (data)");
1557 if (ret)
1558 return ret;
1559
1560 /* Transfer the contents */
1561 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1562 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1563
1564 return 0;
1565}
1566
Boris Brezillon767eb6f2018-09-06 14:05:21 +02001567static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001568 const u8 *buf,
1569 int oob_required, int page)
1570{
Boris Brezillon767eb6f2018-09-06 14:05:21 +02001571 struct mtd_info *mtd = nand_to_mtd(chip);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001572 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1573 const u8 *data = buf;
1574 const u8 *spare = chip->oob_poi;
1575 int data_len = lt->data_bytes;
1576 int spare_len = lt->spare_bytes;
1577 int chunk, ret;
1578
Boris Brezillonb2525142018-11-11 08:55:18 +01001579 marvell_nfc_select_target(chip, chip->cur_cs);
1580
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001581 /* Spare data will be written anyway, so clear it to avoid garbage */
1582 if (!oob_required)
1583 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1584
1585 marvell_nfc_enable_hw_ecc(chip);
1586
1587 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1588 if (chunk >= lt->full_chunk_cnt) {
1589 data_len = lt->last_data_bytes;
1590 spare_len = lt->last_spare_bytes;
1591 }
1592
1593 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1594 spare, spare_len, page);
1595 data += data_len;
1596 spare += spare_len;
1597
1598 /*
1599 * Waiting only for CMDD or PAGED is not enough, ECC are
1600 * partially written. No flag is set once the operation is
1601 * really finished but the ND_RUN bit is cleared, so wait for it
1602 * before stepping into the next command.
1603 */
1604 marvell_nfc_wait_ndrun(chip);
1605 }
1606
1607 ret = marvell_nfc_wait_op(chip,
Chris Packhamb76401f2018-05-03 14:21:28 +12001608 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001609
1610 marvell_nfc_disable_hw_ecc(chip);
1611
1612 if (ret)
1613 return ret;
1614
1615 return 0;
1616}
1617
Boris Brezillon767eb6f2018-09-06 14:05:21 +02001618static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001619 int page)
1620{
Boris Brezillon767eb6f2018-09-06 14:05:21 +02001621 struct mtd_info *mtd = nand_to_mtd(chip);
1622
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001623 /* Invalidate page cache */
1624 chip->pagebuf = -1;
1625
1626 memset(chip->data_buf, 0xFF, mtd->writesize);
1627
Boris Brezillon767eb6f2018-09-06 14:05:21 +02001628 return chip->ecc.write_page_raw(chip, chip->data_buf, true, page);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001629}
1630
Boris Brezillon767eb6f2018-09-06 14:05:21 +02001631static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001632{
Boris Brezillon767eb6f2018-09-06 14:05:21 +02001633 struct mtd_info *mtd = nand_to_mtd(chip);
1634
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001635 /* Invalidate page cache */
1636 chip->pagebuf = -1;
1637
1638 memset(chip->data_buf, 0xFF, mtd->writesize);
1639
Boris Brezillon767eb6f2018-09-06 14:05:21 +02001640 return chip->ecc.write_page(chip, chip->data_buf, true, page);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001641}
1642
1643/* NAND framework ->exec_op() hooks and related helpers */
1644static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1645 const struct nand_subop *subop,
1646 struct marvell_nfc_op *nfc_op)
1647{
1648 const struct nand_op_instr *instr = NULL;
1649 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1650 bool first_cmd = true;
1651 unsigned int op_id;
1652 int i;
1653
1654 /* Reset the input structure as most of its fields will be OR'ed */
1655 memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1656
1657 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1658 unsigned int offset, naddrs;
1659 const u8 *addrs;
Miquel Raynal21a26802018-09-07 16:29:54 +02001660 int len;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001661
1662 instr = &subop->instrs[op_id];
1663
1664 switch (instr->type) {
1665 case NAND_OP_CMD_INSTR:
1666 if (first_cmd)
1667 nfc_op->ndcb[0] |=
1668 NDCB0_CMD1(instr->ctx.cmd.opcode);
1669 else
1670 nfc_op->ndcb[0] |=
1671 NDCB0_CMD2(instr->ctx.cmd.opcode) |
1672 NDCB0_DBC;
1673
1674 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1675 first_cmd = false;
1676 break;
1677
1678 case NAND_OP_ADDR_INSTR:
1679 offset = nand_subop_get_addr_start_off(subop, op_id);
1680 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1681 addrs = &instr->ctx.addr.addrs[offset];
1682
1683 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1684
1685 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1686 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1687
1688 if (naddrs >= 5)
1689 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1690 if (naddrs >= 6)
1691 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1692 if (naddrs == 7)
1693 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1694
1695 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1696 break;
1697
1698 case NAND_OP_DATA_IN_INSTR:
1699 nfc_op->data_instr = instr;
1700 nfc_op->data_instr_idx = op_id;
1701 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1702 if (nfc->caps->is_nfcv2) {
1703 nfc_op->ndcb[0] |=
1704 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1705 NDCB0_LEN_OVRD;
Miquel Raynal21a26802018-09-07 16:29:54 +02001706 len = nand_subop_get_data_len(subop, op_id);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001707 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1708 }
1709 nfc_op->data_delay_ns = instr->delay_ns;
1710 break;
1711
1712 case NAND_OP_DATA_OUT_INSTR:
1713 nfc_op->data_instr = instr;
1714 nfc_op->data_instr_idx = op_id;
1715 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1716 if (nfc->caps->is_nfcv2) {
1717 nfc_op->ndcb[0] |=
1718 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1719 NDCB0_LEN_OVRD;
Miquel Raynal21a26802018-09-07 16:29:54 +02001720 len = nand_subop_get_data_len(subop, op_id);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01001721 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1722 }
1723 nfc_op->data_delay_ns = instr->delay_ns;
1724 break;
1725
1726 case NAND_OP_WAITRDY_INSTR:
1727 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1728 nfc_op->rdy_delay_ns = instr->delay_ns;
1729 break;
1730 }
1731 }
1732}
1733
1734static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1735 const struct nand_subop *subop,
1736 struct marvell_nfc_op *nfc_op)
1737{
1738 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1739 const struct nand_op_instr *instr = nfc_op->data_instr;
1740 unsigned int op_id = nfc_op->data_instr_idx;
1741 unsigned int len = nand_subop_get_data_len(subop, op_id);
1742 unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1743 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1744 int ret;
1745
1746 if (instr->ctx.data.force_8bit)
1747 marvell_nfc_force_byte_access(chip, true);
1748
1749 if (reading) {
1750 u8 *in = instr->ctx.data.buf.in + offset;
1751
1752 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1753 } else {
1754 const u8 *out = instr->ctx.data.buf.out + offset;
1755
1756 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1757 }
1758
1759 if (instr->ctx.data.force_8bit)
1760 marvell_nfc_force_byte_access(chip, false);
1761
1762 return ret;
1763}
1764
1765static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1766 const struct nand_subop *subop)
1767{
1768 struct marvell_nfc_op nfc_op;
1769 bool reading;
1770 int ret;
1771
1772 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1773 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1774
1775 ret = marvell_nfc_prepare_cmd(chip);
1776 if (ret)
1777 return ret;
1778
1779 marvell_nfc_send_cmd(chip, &nfc_op);
1780 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1781 "RDDREQ/WRDREQ while draining raw data");
1782 if (ret)
1783 return ret;
1784
1785 cond_delay(nfc_op.cle_ale_delay_ns);
1786
1787 if (reading) {
1788 if (nfc_op.rdy_timeout_ms) {
1789 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1790 if (ret)
1791 return ret;
1792 }
1793
1794 cond_delay(nfc_op.rdy_delay_ns);
1795 }
1796
1797 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1798 ret = marvell_nfc_wait_cmdd(chip);
1799 if (ret)
1800 return ret;
1801
1802 cond_delay(nfc_op.data_delay_ns);
1803
1804 if (!reading) {
1805 if (nfc_op.rdy_timeout_ms) {
1806 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1807 if (ret)
1808 return ret;
1809 }
1810
1811 cond_delay(nfc_op.rdy_delay_ns);
1812 }
1813
1814 /*
1815 * NDCR ND_RUN bit should be cleared automatically at the end of each
1816 * operation but experience shows that the behavior is buggy when it
1817 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1818 */
1819 if (!reading) {
1820 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1821
1822 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1823 nfc->regs + NDCR);
1824 }
1825
1826 return 0;
1827}
1828
1829static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1830 const struct nand_subop *subop)
1831{
1832 struct marvell_nfc_op nfc_op;
1833 int ret;
1834
1835 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1836
1837 /*
1838 * Naked access are different in that they need to be flagged as naked
1839 * by the controller. Reset the controller registers fields that inform
1840 * on the type and refill them according to the ongoing operation.
1841 */
1842 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1843 NDCB0_CMD_XTYPE(XTYPE_MASK));
1844 switch (subop->instrs[0].type) {
1845 case NAND_OP_CMD_INSTR:
1846 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1847 break;
1848 case NAND_OP_ADDR_INSTR:
1849 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1850 break;
1851 case NAND_OP_DATA_IN_INSTR:
1852 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1853 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1854 break;
1855 case NAND_OP_DATA_OUT_INSTR:
1856 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1857 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1858 break;
1859 default:
1860 /* This should never happen */
1861 break;
1862 }
1863
1864 ret = marvell_nfc_prepare_cmd(chip);
1865 if (ret)
1866 return ret;
1867
1868 marvell_nfc_send_cmd(chip, &nfc_op);
1869
1870 if (!nfc_op.data_instr) {
1871 ret = marvell_nfc_wait_cmdd(chip);
1872 cond_delay(nfc_op.cle_ale_delay_ns);
1873 return ret;
1874 }
1875
1876 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1877 "RDDREQ/WRDREQ while draining raw data");
1878 if (ret)
1879 return ret;
1880
1881 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1882 ret = marvell_nfc_wait_cmdd(chip);
1883 if (ret)
1884 return ret;
1885
1886 /*
1887 * NDCR ND_RUN bit should be cleared automatically at the end of each
1888 * operation but experience shows that the behavior is buggy when it
1889 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1890 */
1891 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1892 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1893
1894 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1895 nfc->regs + NDCR);
1896 }
1897
1898 return 0;
1899}
1900
1901static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1902 const struct nand_subop *subop)
1903{
1904 struct marvell_nfc_op nfc_op;
1905 int ret;
1906
1907 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1908
1909 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1910 cond_delay(nfc_op.rdy_delay_ns);
1911
1912 return ret;
1913}
1914
1915static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1916 const struct nand_subop *subop)
1917{
1918 struct marvell_nfc_op nfc_op;
1919 int ret;
1920
1921 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1922 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1923 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1924
1925 ret = marvell_nfc_prepare_cmd(chip);
1926 if (ret)
1927 return ret;
1928
1929 marvell_nfc_send_cmd(chip, &nfc_op);
1930 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1931 "RDDREQ while reading ID");
1932 if (ret)
1933 return ret;
1934
1935 cond_delay(nfc_op.cle_ale_delay_ns);
1936
1937 if (nfc_op.rdy_timeout_ms) {
1938 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1939 if (ret)
1940 return ret;
1941 }
1942
1943 cond_delay(nfc_op.rdy_delay_ns);
1944
1945 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1946 ret = marvell_nfc_wait_cmdd(chip);
1947 if (ret)
1948 return ret;
1949
1950 cond_delay(nfc_op.data_delay_ns);
1951
1952 return 0;
1953}
1954
1955static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1956 const struct nand_subop *subop)
1957{
1958 struct marvell_nfc_op nfc_op;
1959 int ret;
1960
1961 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1962 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1963 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1964
1965 ret = marvell_nfc_prepare_cmd(chip);
1966 if (ret)
1967 return ret;
1968
1969 marvell_nfc_send_cmd(chip, &nfc_op);
1970 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1971 "RDDREQ while reading status");
1972 if (ret)
1973 return ret;
1974
1975 cond_delay(nfc_op.cle_ale_delay_ns);
1976
1977 if (nfc_op.rdy_timeout_ms) {
1978 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1979 if (ret)
1980 return ret;
1981 }
1982
1983 cond_delay(nfc_op.rdy_delay_ns);
1984
1985 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1986 ret = marvell_nfc_wait_cmdd(chip);
1987 if (ret)
1988 return ret;
1989
1990 cond_delay(nfc_op.data_delay_ns);
1991
1992 return 0;
1993}
1994
1995static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1996 const struct nand_subop *subop)
1997{
1998 struct marvell_nfc_op nfc_op;
1999 int ret;
2000
2001 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2002 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
2003
2004 ret = marvell_nfc_prepare_cmd(chip);
2005 if (ret)
2006 return ret;
2007
2008 marvell_nfc_send_cmd(chip, &nfc_op);
2009 ret = marvell_nfc_wait_cmdd(chip);
2010 if (ret)
2011 return ret;
2012
2013 cond_delay(nfc_op.cle_ale_delay_ns);
2014
2015 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2016 if (ret)
2017 return ret;
2018
2019 cond_delay(nfc_op.rdy_delay_ns);
2020
2021 return 0;
2022}
2023
2024static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
2025 const struct nand_subop *subop)
2026{
2027 struct marvell_nfc_op nfc_op;
2028 int ret;
2029
2030 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2031 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
2032
2033 ret = marvell_nfc_prepare_cmd(chip);
2034 if (ret)
2035 return ret;
2036
2037 marvell_nfc_send_cmd(chip, &nfc_op);
2038 ret = marvell_nfc_wait_cmdd(chip);
2039 if (ret)
2040 return ret;
2041
2042 cond_delay(nfc_op.cle_ale_delay_ns);
2043
2044 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2045 if (ret)
2046 return ret;
2047
2048 cond_delay(nfc_op.rdy_delay_ns);
2049
2050 return 0;
2051}
2052
2053static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
2054 /* Monolithic reads/writes */
2055 NAND_OP_PARSER_PATTERN(
2056 marvell_nfc_monolithic_access_exec,
2057 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2058 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
2059 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2060 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2061 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2062 NAND_OP_PARSER_PATTERN(
2063 marvell_nfc_monolithic_access_exec,
2064 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2065 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
2066 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
2067 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2068 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2069 /* Naked commands */
2070 NAND_OP_PARSER_PATTERN(
2071 marvell_nfc_naked_access_exec,
2072 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2073 NAND_OP_PARSER_PATTERN(
2074 marvell_nfc_naked_access_exec,
2075 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
2076 NAND_OP_PARSER_PATTERN(
2077 marvell_nfc_naked_access_exec,
2078 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2079 NAND_OP_PARSER_PATTERN(
2080 marvell_nfc_naked_access_exec,
2081 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
2082 NAND_OP_PARSER_PATTERN(
2083 marvell_nfc_naked_waitrdy_exec,
2084 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2085 );
2086
2087static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
2088 /* Naked commands not supported, use a function for each pattern */
2089 NAND_OP_PARSER_PATTERN(
2090 marvell_nfc_read_id_type_exec,
2091 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2092 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2093 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2094 NAND_OP_PARSER_PATTERN(
2095 marvell_nfc_erase_cmd_type_exec,
2096 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2097 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2098 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2099 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2100 NAND_OP_PARSER_PATTERN(
2101 marvell_nfc_read_status_exec,
2102 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2103 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2104 NAND_OP_PARSER_PATTERN(
2105 marvell_nfc_reset_cmd_type_exec,
2106 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2107 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2108 NAND_OP_PARSER_PATTERN(
2109 marvell_nfc_naked_waitrdy_exec,
2110 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2111 );
2112
2113static int marvell_nfc_exec_op(struct nand_chip *chip,
2114 const struct nand_operation *op,
2115 bool check_only)
2116{
2117 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2118
Boris Brezillonb2525142018-11-11 08:55:18 +01002119 marvell_nfc_select_target(chip, op->cs);
2120
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002121 if (nfc->caps->is_nfcv2)
2122 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2123 op, check_only);
2124 else
2125 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2126 op, check_only);
2127}
2128
2129/*
2130 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2131 * usable.
2132 */
2133static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2134 struct mtd_oob_region *oobregion)
2135{
2136 struct nand_chip *chip = mtd_to_nand(mtd);
2137 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2138
2139 if (section)
2140 return -ERANGE;
2141
2142 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2143 lt->last_ecc_bytes;
2144 oobregion->offset = mtd->oobsize - oobregion->length;
2145
2146 return 0;
2147}
2148
2149static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2150 struct mtd_oob_region *oobregion)
2151{
2152 struct nand_chip *chip = mtd_to_nand(mtd);
2153 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2154
2155 if (section)
2156 return -ERANGE;
2157
2158 /*
2159 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2160 * 4KB page / 4bit BCH combination.
2161 */
2162 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2163 oobregion->offset = 6;
2164 else
2165 oobregion->offset = 2;
2166
2167 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2168 lt->last_spare_bytes - oobregion->offset;
2169
2170 return 0;
2171}
2172
2173static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2174 .ecc = marvell_nand_ooblayout_ecc,
2175 .free = marvell_nand_ooblayout_free,
2176};
2177
2178static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2179 struct nand_ecc_ctrl *ecc)
2180{
2181 struct nand_chip *chip = mtd_to_nand(mtd);
2182 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2183 const struct marvell_hw_ecc_layout *l;
2184 int i;
2185
2186 if (!nfc->caps->is_nfcv2 &&
2187 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2188 dev_err(nfc->dev,
2189 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2190 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2191 return -ENOTSUPP;
2192 }
2193
2194 to_marvell_nand(chip)->layout = NULL;
2195 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2196 l = &marvell_nfc_layouts[i];
2197 if (mtd->writesize == l->writesize &&
2198 ecc->size == l->chunk && ecc->strength == l->strength) {
2199 to_marvell_nand(chip)->layout = l;
2200 break;
2201 }
2202 }
2203
2204 if (!to_marvell_nand(chip)->layout ||
2205 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2206 dev_err(nfc->dev,
2207 "ECC strength %d at page size %d is not supported\n",
2208 ecc->strength, mtd->writesize);
2209 return -ENOTSUPP;
2210 }
2211
Miquel Raynal7fd130f2018-07-19 12:21:19 +02002212 /* Special care for the layout 2k/8-bit/512B */
2213 if (l->writesize == 2048 && l->strength == 8) {
2214 if (mtd->oobsize < 128) {
2215 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
2216 return -ENOTSUPP;
2217 } else {
2218 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2219 }
2220 }
2221
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002222 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2223 ecc->steps = l->nchunks;
2224 ecc->size = l->data_bytes;
2225
2226 if (ecc->strength == 1) {
2227 chip->ecc.algo = NAND_ECC_HAMMING;
2228 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2229 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2230 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2231 ecc->read_oob = ecc->read_oob_raw;
2232 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2233 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2234 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2235 ecc->write_oob = ecc->write_oob_raw;
2236 } else {
2237 chip->ecc.algo = NAND_ECC_BCH;
2238 ecc->strength = 16;
2239 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2240 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2241 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2242 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2243 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2244 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2245 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2246 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2247 }
2248
2249 return 0;
2250}
2251
2252static int marvell_nand_ecc_init(struct mtd_info *mtd,
2253 struct nand_ecc_ctrl *ecc)
2254{
2255 struct nand_chip *chip = mtd_to_nand(mtd);
2256 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2257 int ret;
2258
2259 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2260 if (chip->ecc_step_ds && chip->ecc_strength_ds) {
2261 ecc->size = chip->ecc_step_ds;
2262 ecc->strength = chip->ecc_strength_ds;
2263 } else {
2264 dev_info(nfc->dev,
2265 "No minimum ECC strength, using 1b/512B\n");
2266 ecc->size = 512;
2267 ecc->strength = 1;
2268 }
2269 }
2270
2271 switch (ecc->mode) {
2272 case NAND_ECC_HW:
2273 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2274 if (ret)
2275 return ret;
2276 break;
2277 case NAND_ECC_NONE:
2278 case NAND_ECC_SOFT:
Chris Packhamed6d0282018-06-25 10:44:43 +12002279 case NAND_ECC_ON_DIE:
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002280 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2281 mtd->writesize != SZ_2K) {
2282 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2283 mtd->writesize);
2284 return -EINVAL;
2285 }
2286 break;
2287 default:
2288 return -EINVAL;
2289 }
2290
2291 return 0;
2292}
2293
2294static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2295static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2296
2297static struct nand_bbt_descr bbt_main_descr = {
2298 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2299 NAND_BBT_2BIT | NAND_BBT_VERSION,
2300 .offs = 8,
2301 .len = 6,
2302 .veroffs = 14,
2303 .maxblocks = 8, /* Last 8 blocks in each chip */
2304 .pattern = bbt_pattern
2305};
2306
2307static struct nand_bbt_descr bbt_mirror_descr = {
2308 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2309 NAND_BBT_2BIT | NAND_BBT_VERSION,
2310 .offs = 8,
2311 .len = 6,
2312 .veroffs = 14,
2313 .maxblocks = 8, /* Last 8 blocks in each chip */
2314 .pattern = bbt_mirror_pattern
2315};
2316
Boris Brezillon858838b2018-09-06 14:05:33 +02002317static int marvell_nfc_setup_data_interface(struct nand_chip *chip, int chipnr,
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002318 const struct nand_data_interface
2319 *conf)
2320{
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002321 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2322 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
Boris Brezillon6b6de652018-03-26 11:53:01 +02002323 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002324 const struct nand_sdr_timings *sdr;
2325 struct marvell_nfc_timings nfc_tmg;
2326 int read_delay;
2327
2328 sdr = nand_get_sdr_timings(conf);
2329 if (IS_ERR(sdr))
2330 return PTR_ERR(sdr);
2331
2332 /*
2333 * SDR timings are given in pico-seconds while NFC timings must be
2334 * expressed in NAND controller clock cycles, which is half of the
2335 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2336 * This is not written anywhere in the datasheet but was observed
2337 * with an oscilloscope.
2338 *
2339 * NFC datasheet gives equations from which thoses calculations
2340 * are derived, they tend to be slightly more restrictives than the
2341 * given core timings and may improve the overall speed.
2342 */
2343 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2344 nfc_tmg.tRH = nfc_tmg.tRP;
2345 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2346 nfc_tmg.tWH = nfc_tmg.tWP;
2347 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2348 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2349 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2350 /*
2351 * Read delay is the time of propagation from SoC pins to NFC internal
2352 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2353 * EDO mode, an additional delay of tRH must be taken into account so
2354 * the data is sampled on the falling edge instead of the rising edge.
2355 */
2356 read_delay = sdr->tRC_min >= 30000 ?
2357 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2358
2359 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2360 /*
2361 * tWHR and tRHW are supposed to be read to write delays (and vice
2362 * versa) but in some cases, ie. when doing a change column, they must
2363 * be greater than that to be sure tCCS delay is respected.
2364 */
2365 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2366 period_ns) - 2,
2367 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2368 period_ns);
2369
Miquel Raynal07ad5a72018-01-17 00:19:34 +01002370 /*
2371 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2372 * NFCv1: No WAIT_MODE, tR must be maximal.
2373 */
2374 if (nfc->caps->is_nfcv2) {
2375 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2376 } else {
2377 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2378 period_ns);
2379 if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2380 nfc_tmg.tR = nfc_tmg.tCH - 3;
2381 else
2382 nfc_tmg.tR = 0;
2383 }
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002384
2385 if (chipnr < 0)
2386 return 0;
2387
2388 marvell_nand->ndtr0 =
2389 NDTR0_TRP(nfc_tmg.tRP) |
2390 NDTR0_TRH(nfc_tmg.tRH) |
2391 NDTR0_ETRP(nfc_tmg.tRP) |
2392 NDTR0_TWP(nfc_tmg.tWP) |
2393 NDTR0_TWH(nfc_tmg.tWH) |
2394 NDTR0_TCS(nfc_tmg.tCS) |
Miquel Raynal07ad5a72018-01-17 00:19:34 +01002395 NDTR0_TCH(nfc_tmg.tCH);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002396
2397 marvell_nand->ndtr1 =
2398 NDTR1_TAR(nfc_tmg.tAR) |
2399 NDTR1_TWHR(nfc_tmg.tWHR) |
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002400 NDTR1_TR(nfc_tmg.tR);
2401
Miquel Raynal07ad5a72018-01-17 00:19:34 +01002402 if (nfc->caps->is_nfcv2) {
2403 marvell_nand->ndtr0 |=
2404 NDTR0_RD_CNT_DEL(read_delay) |
2405 NDTR0_SELCNTR |
2406 NDTR0_TADL(nfc_tmg.tADL);
2407
2408 marvell_nand->ndtr1 |=
2409 NDTR1_TRHW(nfc_tmg.tRHW) |
2410 NDTR1_WAIT_MODE;
2411 }
2412
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002413 return 0;
2414}
2415
Miquel Raynal8831e482018-07-20 17:15:05 +02002416static int marvell_nand_attach_chip(struct nand_chip *chip)
2417{
2418 struct mtd_info *mtd = nand_to_mtd(chip);
2419 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2420 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2421 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2422 int ret;
2423
2424 if (pdata && pdata->flash_bbt)
2425 chip->bbt_options |= NAND_BBT_USE_FLASH;
2426
2427 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2428 /*
2429 * We'll use a bad block table stored in-flash and don't
2430 * allow writing the bad block marker to the flash.
2431 */
2432 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2433 chip->bbt_td = &bbt_main_descr;
2434 chip->bbt_md = &bbt_mirror_descr;
2435 }
2436
2437 /* Save the chip-specific fields of NDCR */
2438 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2439 if (chip->options & NAND_BUSWIDTH_16)
2440 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2441
2442 /*
2443 * On small page NANDs, only one cycle is needed to pass the
2444 * column address.
2445 */
2446 if (mtd->writesize <= 512) {
2447 marvell_nand->addr_cyc = 1;
2448 } else {
2449 marvell_nand->addr_cyc = 2;
2450 marvell_nand->ndcr |= NDCR_RA_START;
2451 }
2452
2453 /*
2454 * Now add the number of cycles needed to pass the row
2455 * address.
2456 *
2457 * Addressing a chip using CS 2 or 3 should also need the third row
2458 * cycle but due to inconsistance in the documentation and lack of
2459 * hardware to test this situation, this case is not supported.
2460 */
2461 if (chip->options & NAND_ROW_ADDR_3)
2462 marvell_nand->addr_cyc += 3;
2463 else
2464 marvell_nand->addr_cyc += 2;
2465
2466 if (pdata) {
2467 chip->ecc.size = pdata->ecc_step_size;
2468 chip->ecc.strength = pdata->ecc_strength;
2469 }
2470
2471 ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2472 if (ret) {
2473 dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2474 return ret;
2475 }
2476
2477 if (chip->ecc.mode == NAND_ECC_HW) {
2478 /*
2479 * Subpage write not available with hardware ECC, prohibit also
2480 * subpage read as in userspace subpage access would still be
2481 * allowed and subpage write, if used, would lead to numerous
2482 * uncorrectable ECC errors.
2483 */
2484 chip->options |= NAND_NO_SUBPAGE_WRITE;
2485 }
2486
2487 if (pdata || nfc->caps->legacy_of_bindings) {
2488 /*
2489 * We keep the MTD name unchanged to avoid breaking platforms
2490 * where the MTD cmdline parser is used and the bootloader
2491 * has not been updated to use the new naming scheme.
2492 */
2493 mtd->name = "pxa3xx_nand-0";
2494 } else if (!mtd->name) {
2495 /*
2496 * If the new bindings are used and the bootloader has not been
2497 * updated to pass a new mtdparts parameter on the cmdline, you
2498 * should define the following property in your NAND node, ie:
2499 *
2500 * label = "main-storage";
2501 *
2502 * This way, mtd->name will be set by the core when
2503 * nand_set_flash_node() is called.
2504 */
2505 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2506 "%s:nand.%d", dev_name(nfc->dev),
2507 marvell_nand->sels[0].cs);
2508 if (!mtd->name) {
2509 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2510 return -ENOMEM;
2511 }
2512 }
2513
2514 return 0;
2515}
2516
2517static const struct nand_controller_ops marvell_nand_controller_ops = {
2518 .attach_chip = marvell_nand_attach_chip,
Boris Brezillonf2abfeb2018-11-11 08:55:23 +01002519 .exec_op = marvell_nfc_exec_op,
Boris Brezillon7a08dba2018-11-11 08:55:24 +01002520 .setup_data_interface = marvell_nfc_setup_data_interface,
Miquel Raynal8831e482018-07-20 17:15:05 +02002521};
2522
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002523static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2524 struct device_node *np)
2525{
2526 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2527 struct marvell_nand_chip *marvell_nand;
2528 struct mtd_info *mtd;
2529 struct nand_chip *chip;
2530 int nsels, ret, i;
2531 u32 cs, rb;
2532
2533 /*
2534 * The legacy "num-cs" property indicates the number of CS on the only
2535 * chip connected to the controller (legacy bindings does not support
Miquel Raynalf6997be2018-04-25 16:16:32 +02002536 * more than one chip). The CS and RB pins are always the #0.
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002537 *
2538 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2539 * properties must be filled. For each chip, expressed as a subnode,
2540 * "reg" points to the CS lines and "nand-rb" to the RB line.
2541 */
Miquel Raynalf6997be2018-04-25 16:16:32 +02002542 if (pdata || nfc->caps->legacy_of_bindings) {
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002543 nsels = 1;
Miquel Raynalf6997be2018-04-25 16:16:32 +02002544 } else {
2545 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2546 if (nsels <= 0) {
2547 dev_err(dev, "missing/invalid reg property\n");
2548 return -EINVAL;
2549 }
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002550 }
2551
2552 /* Alloc the nand chip structure */
Gustavo A. R. Silva7b301962019-01-04 12:20:51 -06002553 marvell_nand = devm_kzalloc(dev,
2554 struct_size(marvell_nand, sels, nsels),
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002555 GFP_KERNEL);
2556 if (!marvell_nand) {
2557 dev_err(dev, "could not allocate chip structure\n");
2558 return -ENOMEM;
2559 }
2560
2561 marvell_nand->nsels = nsels;
2562 marvell_nand->selected_die = -1;
2563
2564 for (i = 0; i < nsels; i++) {
2565 if (pdata || nfc->caps->legacy_of_bindings) {
2566 /*
2567 * Legacy bindings use the CS lines in natural
2568 * order (0, 1, ...)
2569 */
2570 cs = i;
2571 } else {
2572 /* Retrieve CS id */
2573 ret = of_property_read_u32_index(np, "reg", i, &cs);
2574 if (ret) {
2575 dev_err(dev, "could not retrieve reg property: %d\n",
2576 ret);
2577 return ret;
2578 }
2579 }
2580
2581 if (cs >= nfc->caps->max_cs_nb) {
2582 dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2583 cs, nfc->caps->max_cs_nb);
2584 return -EINVAL;
2585 }
2586
2587 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2588 dev_err(dev, "CS %d already assigned\n", cs);
2589 return -EINVAL;
2590 }
2591
2592 /*
2593 * The cs variable represents the chip select id, which must be
2594 * converted in bit fields for NDCB0 and NDCB2 to select the
2595 * right chip. Unfortunately, due to a lack of information on
2596 * the subject and incoherent documentation, the user should not
2597 * use CS1 and CS3 at all as asserting them is not supported in
2598 * a reliable way (due to multiplexing inside ADDR5 field).
2599 */
2600 marvell_nand->sels[i].cs = cs;
2601 switch (cs) {
2602 case 0:
2603 case 2:
2604 marvell_nand->sels[i].ndcb0_csel = 0;
2605 break;
2606 case 1:
2607 case 3:
2608 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2609 break;
2610 default:
2611 return -EINVAL;
2612 }
2613
2614 /* Retrieve RB id */
2615 if (pdata || nfc->caps->legacy_of_bindings) {
2616 /* Legacy bindings always use RB #0 */
2617 rb = 0;
2618 } else {
2619 ret = of_property_read_u32_index(np, "nand-rb", i,
2620 &rb);
2621 if (ret) {
2622 dev_err(dev,
2623 "could not retrieve RB property: %d\n",
2624 ret);
2625 return ret;
2626 }
2627 }
2628
2629 if (rb >= nfc->caps->max_rb_nb) {
2630 dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2631 rb, nfc->caps->max_rb_nb);
2632 return -EINVAL;
2633 }
2634
2635 marvell_nand->sels[i].rb = rb;
2636 }
2637
2638 chip = &marvell_nand->chip;
2639 chip->controller = &nfc->controller;
2640 nand_set_flash_node(chip, np);
2641
Miquel Raynal07ad5a72018-01-17 00:19:34 +01002642 if (!of_property_read_bool(np, "marvell,nand-keep-config"))
Boris Brezillon7a08dba2018-11-11 08:55:24 +01002643 chip->options |= NAND_KEEP_TIMINGS;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002644
2645 mtd = nand_to_mtd(chip);
2646 mtd->dev.parent = dev;
2647
2648 /*
2649 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2650 * in the DT node, this entry will be overwritten in nand_scan_ident().
2651 */
2652 chip->ecc.mode = NAND_ECC_HW;
2653
2654 /*
2655 * Save a reference value for timing registers before
2656 * ->setup_data_interface() is called.
2657 */
2658 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2659 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2660
2661 chip->options |= NAND_BUSWIDTH_AUTO;
Miquel Raynal8831e482018-07-20 17:15:05 +02002662
Boris Brezillon00ad3782018-09-06 14:05:14 +02002663 ret = nand_scan(chip, marvell_nand->nsels);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002664 if (ret) {
Miquel Raynal8831e482018-07-20 17:15:05 +02002665 dev_err(dev, "could not scan the nand chip\n");
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002666 return ret;
2667 }
2668
2669 if (pdata)
2670 /* Legacy bindings support only one chip */
Miquel Raynal75765942018-02-19 23:35:54 +01002671 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002672 else
2673 ret = mtd_device_register(mtd, NULL, 0);
2674 if (ret) {
2675 dev_err(dev, "failed to register mtd device: %d\n", ret);
Boris Brezillon59ac2762018-09-06 14:05:15 +02002676 nand_release(chip);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002677 return ret;
2678 }
2679
2680 list_add_tail(&marvell_nand->node, &nfc->chips);
2681
2682 return 0;
2683}
2684
2685static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2686{
2687 struct device_node *np = dev->of_node;
2688 struct device_node *nand_np;
2689 int max_cs = nfc->caps->max_cs_nb;
2690 int nchips;
2691 int ret;
2692
2693 if (!np)
2694 nchips = 1;
2695 else
2696 nchips = of_get_child_count(np);
2697
2698 if (nchips > max_cs) {
2699 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2700 max_cs);
2701 return -EINVAL;
2702 }
2703
2704 /*
2705 * Legacy bindings do not use child nodes to exhibit NAND chip
2706 * properties and layout. Instead, NAND properties are mixed with the
2707 * controller ones, and partitions are defined as direct subnodes of the
2708 * NAND controller node.
2709 */
2710 if (nfc->caps->legacy_of_bindings) {
2711 ret = marvell_nand_chip_init(dev, nfc, np);
2712 return ret;
2713 }
2714
2715 for_each_child_of_node(np, nand_np) {
2716 ret = marvell_nand_chip_init(dev, nfc, nand_np);
2717 if (ret) {
2718 of_node_put(nand_np);
2719 return ret;
2720 }
2721 }
2722
2723 return 0;
2724}
2725
2726static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2727{
2728 struct marvell_nand_chip *entry, *temp;
2729
2730 list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
Boris Brezillon59ac2762018-09-06 14:05:15 +02002731 nand_release(&entry->chip);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002732 list_del(&entry->node);
2733 }
2734}
2735
2736static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2737{
2738 struct platform_device *pdev = container_of(nfc->dev,
2739 struct platform_device,
2740 dev);
2741 struct dma_slave_config config = {};
2742 struct resource *r;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002743 int ret;
2744
2745 if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2746 dev_warn(nfc->dev,
2747 "DMA not enabled in configuration\n");
2748 return -ENOTSUPP;
2749 }
2750
2751 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2752 if (ret)
2753 return ret;
2754
Robert Jarzmikac75a502018-06-17 19:02:09 +02002755 nfc->dma_chan = dma_request_slave_channel(nfc->dev, "data");
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002756 if (!nfc->dma_chan) {
2757 dev_err(nfc->dev,
2758 "Unable to request data DMA channel\n");
2759 return -ENODEV;
2760 }
2761
2762 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2763 if (!r)
2764 return -ENXIO;
2765
2766 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2767 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2768 config.src_addr = r->start + NDDB;
2769 config.dst_addr = r->start + NDDB;
2770 config.src_maxburst = 32;
2771 config.dst_maxburst = 32;
2772 ret = dmaengine_slave_config(nfc->dma_chan, &config);
2773 if (ret < 0) {
2774 dev_err(nfc->dev, "Failed to configure DMA channel\n");
2775 return ret;
2776 }
2777
2778 /*
2779 * DMA must act on length multiple of 32 and this length may be
2780 * bigger than the destination buffer. Use this buffer instead
2781 * for DMA transfers and then copy the desired amount of data to
2782 * the provided buffer.
2783 */
Miquel Raynalc495a922018-01-19 18:39:01 +01002784 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002785 if (!nfc->dma_buf)
2786 return -ENOMEM;
2787
2788 nfc->use_dma = true;
2789
2790 return 0;
2791}
2792
Daniel Mackbd9c3f92018-07-08 02:10:06 +02002793static void marvell_nfc_reset(struct marvell_nfc *nfc)
2794{
2795 /*
2796 * ECC operations and interruptions are only enabled when specifically
2797 * needed. ECC shall not be activated in the early stages (fails probe).
2798 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2799 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2800 * offset in the read page and this will fail the protection.
2801 */
2802 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2803 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2804 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2805 writel_relaxed(0, nfc->regs + NDECCCTRL);
2806}
2807
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002808static int marvell_nfc_init(struct marvell_nfc *nfc)
2809{
2810 struct device_node *np = nfc->dev->of_node;
2811
2812 /*
2813 * Some SoCs like A7k/A8k need to enable manually the NAND
2814 * controller, gated clocks and reset bits to avoid being bootloader
2815 * dependent. This is done through the use of the System Functions
2816 * registers.
2817 */
2818 if (nfc->caps->need_system_controller) {
2819 struct regmap *sysctrl_base =
2820 syscon_regmap_lookup_by_phandle(np,
2821 "marvell,system-controller");
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002822
2823 if (IS_ERR(sysctrl_base))
2824 return PTR_ERR(sysctrl_base);
2825
Thomas Petazzoni88aa3bb2018-08-02 10:56:25 +02002826 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2827 GENCONF_SOC_DEVICE_MUX_NFC_EN |
2828 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2829 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2830 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002831
Thomas Petazzoni88aa3bb2018-08-02 10:56:25 +02002832 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2833 GENCONF_CLK_GATING_CTRL_ND_GATE,
2834 GENCONF_CLK_GATING_CTRL_ND_GATE);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002835
Thomas Petazzoni88aa3bb2018-08-02 10:56:25 +02002836 regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL,
2837 GENCONF_ND_CLK_CTRL_EN,
2838 GENCONF_ND_CLK_CTRL_EN);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002839 }
2840
2841 /* Configure the DMA if appropriate */
2842 if (!nfc->caps->is_nfcv2)
2843 marvell_nfc_init_dma(nfc);
2844
Daniel Mackbd9c3f92018-07-08 02:10:06 +02002845 marvell_nfc_reset(nfc);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002846
2847 return 0;
2848}
2849
2850static int marvell_nfc_probe(struct platform_device *pdev)
2851{
2852 struct device *dev = &pdev->dev;
2853 struct resource *r;
2854 struct marvell_nfc *nfc;
2855 int ret;
2856 int irq;
2857
2858 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2859 GFP_KERNEL);
2860 if (!nfc)
2861 return -ENOMEM;
2862
2863 nfc->dev = dev;
Miquel Raynal7da45132018-07-17 09:08:02 +02002864 nand_controller_init(&nfc->controller);
Miquel Raynal8831e482018-07-20 17:15:05 +02002865 nfc->controller.ops = &marvell_nand_controller_ops;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002866 INIT_LIST_HEAD(&nfc->chips);
2867
2868 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2869 nfc->regs = devm_ioremap_resource(dev, r);
2870 if (IS_ERR(nfc->regs))
2871 return PTR_ERR(nfc->regs);
2872
2873 irq = platform_get_irq(pdev, 0);
2874 if (irq < 0) {
2875 dev_err(dev, "failed to retrieve irq\n");
2876 return irq;
2877 }
2878
Boris Brezillon6b6de652018-03-26 11:53:01 +02002879 nfc->core_clk = devm_clk_get(&pdev->dev, "core");
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002880
2881 /* Managed the legacy case (when the first clock was not named) */
Boris Brezillon6b6de652018-03-26 11:53:01 +02002882 if (nfc->core_clk == ERR_PTR(-ENOENT))
2883 nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002884
Boris Brezillon6b6de652018-03-26 11:53:01 +02002885 if (IS_ERR(nfc->core_clk))
2886 return PTR_ERR(nfc->core_clk);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002887
Boris Brezillon6b6de652018-03-26 11:53:01 +02002888 ret = clk_prepare_enable(nfc->core_clk);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002889 if (ret)
2890 return ret;
2891
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002892 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
Daniel Mackf9e64d62018-07-08 02:10:08 +02002893 if (IS_ERR(nfc->reg_clk)) {
2894 if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002895 ret = PTR_ERR(nfc->reg_clk);
Boris Brezillon6b6de652018-03-26 11:53:01 +02002896 goto unprepare_core_clk;
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002897 }
Daniel Mackf9e64d62018-07-08 02:10:08 +02002898
2899 nfc->reg_clk = NULL;
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002900 }
2901
Daniel Mackf9e64d62018-07-08 02:10:08 +02002902 ret = clk_prepare_enable(nfc->reg_clk);
2903 if (ret)
2904 goto unprepare_core_clk;
2905
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002906 marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2907 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2908 ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2909 0, "marvell-nfc", nfc);
2910 if (ret)
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002911 goto unprepare_reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002912
2913 /* Get NAND controller capabilities */
2914 if (pdev->id_entry)
2915 nfc->caps = (void *)pdev->id_entry->driver_data;
2916 else
2917 nfc->caps = of_device_get_match_data(&pdev->dev);
2918
2919 if (!nfc->caps) {
2920 dev_err(dev, "Could not retrieve NFC caps\n");
2921 ret = -EINVAL;
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002922 goto unprepare_reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002923 }
2924
2925 /* Init the controller and then probe the chips */
2926 ret = marvell_nfc_init(nfc);
2927 if (ret)
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002928 goto unprepare_reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002929
2930 platform_set_drvdata(pdev, nfc);
2931
2932 ret = marvell_nand_chips_init(dev, nfc);
2933 if (ret)
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002934 goto unprepare_reg_clk;
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002935
2936 return 0;
2937
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002938unprepare_reg_clk:
2939 clk_disable_unprepare(nfc->reg_clk);
Boris Brezillon6b6de652018-03-26 11:53:01 +02002940unprepare_core_clk:
2941 clk_disable_unprepare(nfc->core_clk);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002942
2943 return ret;
2944}
2945
2946static int marvell_nfc_remove(struct platform_device *pdev)
2947{
2948 struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2949
2950 marvell_nand_chips_cleanup(nfc);
2951
2952 if (nfc->use_dma) {
2953 dmaengine_terminate_all(nfc->dma_chan);
2954 dma_release_channel(nfc->dma_chan);
2955 }
2956
Gregory CLEMENT961ba152018-03-13 11:30:16 +01002957 clk_disable_unprepare(nfc->reg_clk);
Boris Brezillon6b6de652018-03-26 11:53:01 +02002958 clk_disable_unprepare(nfc->core_clk);
Miquel Raynal02f26ec2018-01-09 11:36:33 +01002959
2960 return 0;
2961}
2962
Daniel Mackbd9c3f92018-07-08 02:10:06 +02002963static int __maybe_unused marvell_nfc_suspend(struct device *dev)
2964{
2965 struct marvell_nfc *nfc = dev_get_drvdata(dev);
2966 struct marvell_nand_chip *chip;
2967
2968 list_for_each_entry(chip, &nfc->chips, node)
2969 marvell_nfc_wait_ndrun(&chip->chip);
2970
2971 clk_disable_unprepare(nfc->reg_clk);
2972 clk_disable_unprepare(nfc->core_clk);
2973
2974 return 0;
2975}
2976
2977static int __maybe_unused marvell_nfc_resume(struct device *dev)
2978{
2979 struct marvell_nfc *nfc = dev_get_drvdata(dev);
2980 int ret;
2981
2982 ret = clk_prepare_enable(nfc->core_clk);
2983 if (ret < 0)
2984 return ret;
2985
Daniel Mackf9e64d62018-07-08 02:10:08 +02002986 ret = clk_prepare_enable(nfc->reg_clk);
2987 if (ret < 0)
2988 return ret;
Daniel Mackbd9c3f92018-07-08 02:10:06 +02002989
2990 /*
2991 * Reset nfc->selected_chip so the next command will cause the timing
2992 * registers to be restored in marvell_nfc_select_chip().
2993 */
2994 nfc->selected_chip = NULL;
2995
2996 /* Reset registers that have lost their contents */
2997 marvell_nfc_reset(nfc);
2998
2999 return 0;
3000}
3001
3002static const struct dev_pm_ops marvell_nfc_pm_ops = {
3003 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
3004};
3005
Miquel Raynal02f26ec2018-01-09 11:36:33 +01003006static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
3007 .max_cs_nb = 4,
3008 .max_rb_nb = 2,
3009 .need_system_controller = true,
3010 .is_nfcv2 = true,
3011};
3012
3013static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
3014 .max_cs_nb = 4,
3015 .max_rb_nb = 2,
3016 .is_nfcv2 = true,
3017};
3018
3019static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
3020 .max_cs_nb = 2,
3021 .max_rb_nb = 1,
3022 .use_dma = true,
3023};
3024
3025static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
3026 .max_cs_nb = 4,
3027 .max_rb_nb = 2,
3028 .need_system_controller = true,
3029 .legacy_of_bindings = true,
3030 .is_nfcv2 = true,
3031};
3032
3033static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
3034 .max_cs_nb = 4,
3035 .max_rb_nb = 2,
3036 .legacy_of_bindings = true,
3037 .is_nfcv2 = true,
3038};
3039
3040static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
3041 .max_cs_nb = 2,
3042 .max_rb_nb = 1,
3043 .legacy_of_bindings = true,
3044 .use_dma = true,
3045};
3046
3047static const struct platform_device_id marvell_nfc_platform_ids[] = {
3048 {
3049 .name = "pxa3xx-nand",
3050 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
3051 },
3052 { /* sentinel */ },
3053};
3054MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
3055
3056static const struct of_device_id marvell_nfc_of_ids[] = {
3057 {
3058 .compatible = "marvell,armada-8k-nand-controller",
3059 .data = &marvell_armada_8k_nfc_caps,
3060 },
3061 {
3062 .compatible = "marvell,armada370-nand-controller",
3063 .data = &marvell_armada370_nfc_caps,
3064 },
3065 {
3066 .compatible = "marvell,pxa3xx-nand-controller",
3067 .data = &marvell_pxa3xx_nfc_caps,
3068 },
3069 /* Support for old/deprecated bindings: */
3070 {
3071 .compatible = "marvell,armada-8k-nand",
3072 .data = &marvell_armada_8k_nfc_legacy_caps,
3073 },
3074 {
3075 .compatible = "marvell,armada370-nand",
3076 .data = &marvell_armada370_nfc_legacy_caps,
3077 },
3078 {
3079 .compatible = "marvell,pxa3xx-nand",
3080 .data = &marvell_pxa3xx_nfc_legacy_caps,
3081 },
3082 { /* sentinel */ },
3083};
3084MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
3085
3086static struct platform_driver marvell_nfc_driver = {
3087 .driver = {
3088 .name = "marvell-nfc",
3089 .of_match_table = marvell_nfc_of_ids,
Daniel Mackbd9c3f92018-07-08 02:10:06 +02003090 .pm = &marvell_nfc_pm_ops,
Miquel Raynal02f26ec2018-01-09 11:36:33 +01003091 },
3092 .id_table = marvell_nfc_platform_ids,
3093 .probe = marvell_nfc_probe,
3094 .remove = marvell_nfc_remove,
3095};
3096module_platform_driver(marvell_nfc_driver);
3097
3098MODULE_LICENSE("GPL");
3099MODULE_DESCRIPTION("Marvell NAND controller driver");