Rob Rice | 9d12ba8 | 2017-02-03 12:55:33 -0500 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2016 Broadcom |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License, version 2, as |
| 6 | * published by the Free Software Foundation (the "GPL"). |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 11 | * General Public License version 2 (GPLv2) for more details. |
| 12 | * |
| 13 | * You should have received a copy of the GNU General Public License |
| 14 | * version 2 (GPLv2) along with this source code. |
| 15 | */ |
| 16 | |
| 17 | #include <linux/err.h> |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/errno.h> |
| 21 | #include <linux/kernel.h> |
| 22 | #include <linux/interrupt.h> |
| 23 | #include <linux/platform_device.h> |
| 24 | #include <linux/scatterlist.h> |
| 25 | #include <linux/crypto.h> |
| 26 | #include <linux/kthread.h> |
| 27 | #include <linux/rtnetlink.h> |
| 28 | #include <linux/sched.h> |
| 29 | #include <linux/of_address.h> |
| 30 | #include <linux/of_device.h> |
| 31 | #include <linux/io.h> |
| 32 | #include <linux/bitops.h> |
| 33 | |
| 34 | #include <crypto/algapi.h> |
| 35 | #include <crypto/aead.h> |
| 36 | #include <crypto/internal/aead.h> |
| 37 | #include <crypto/aes.h> |
| 38 | #include <crypto/des.h> |
Corentin LABBE | 1126d47 | 2017-05-19 08:53:24 +0200 | [diff] [blame] | 39 | #include <crypto/hmac.h> |
Rob Rice | 9d12ba8 | 2017-02-03 12:55:33 -0500 | [diff] [blame] | 40 | #include <crypto/sha.h> |
| 41 | #include <crypto/md5.h> |
| 42 | #include <crypto/authenc.h> |
| 43 | #include <crypto/skcipher.h> |
| 44 | #include <crypto/hash.h> |
| 45 | #include <crypto/aes.h> |
| 46 | #include <crypto/sha3.h> |
| 47 | |
| 48 | #include "util.h" |
| 49 | #include "cipher.h" |
| 50 | #include "spu.h" |
| 51 | #include "spum.h" |
| 52 | #include "spu2.h" |
| 53 | |
| 54 | /* ================= Device Structure ================== */ |
| 55 | |
| 56 | struct device_private iproc_priv; |
| 57 | |
| 58 | /* ==================== Parameters ===================== */ |
| 59 | |
| 60 | int flow_debug_logging; |
| 61 | module_param(flow_debug_logging, int, 0644); |
| 62 | MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging"); |
| 63 | |
| 64 | int packet_debug_logging; |
| 65 | module_param(packet_debug_logging, int, 0644); |
| 66 | MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging"); |
| 67 | |
| 68 | int debug_logging_sleep; |
| 69 | module_param(debug_logging_sleep, int, 0644); |
| 70 | MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep"); |
| 71 | |
| 72 | /* |
| 73 | * The value of these module parameters is used to set the priority for each |
| 74 | * algo type when this driver registers algos with the kernel crypto API. |
| 75 | * To use a priority other than the default, set the priority in the insmod or |
| 76 | * modprobe. Changing the module priority after init time has no effect. |
| 77 | * |
| 78 | * The default priorities are chosen to be lower (less preferred) than ARMv8 CE |
| 79 | * algos, but more preferred than generic software algos. |
| 80 | */ |
| 81 | static int cipher_pri = 150; |
| 82 | module_param(cipher_pri, int, 0644); |
| 83 | MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos"); |
| 84 | |
| 85 | static int hash_pri = 100; |
| 86 | module_param(hash_pri, int, 0644); |
| 87 | MODULE_PARM_DESC(hash_pri, "Priority for hash algos"); |
| 88 | |
| 89 | static int aead_pri = 150; |
| 90 | module_param(aead_pri, int, 0644); |
| 91 | MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos"); |
| 92 | |
| 93 | #define MAX_SPUS 16 |
| 94 | |
| 95 | /* A type 3 BCM header, expected to precede the SPU header for SPU-M. |
| 96 | * Bits 3 and 4 in the first byte encode the channel number (the dma ringset). |
| 97 | * 0x60 - ring 0 |
| 98 | * 0x68 - ring 1 |
| 99 | * 0x70 - ring 2 |
| 100 | * 0x78 - ring 3 |
| 101 | */ |
| 102 | char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 }; |
| 103 | /* |
| 104 | * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN |
| 105 | * is set dynamically after reading SPU type from device tree. |
| 106 | */ |
| 107 | #define BCM_HDR_LEN iproc_priv.bcm_hdr_len |
| 108 | |
| 109 | /* min and max time to sleep before retrying when mbox queue is full. usec */ |
| 110 | #define MBOX_SLEEP_MIN 800 |
| 111 | #define MBOX_SLEEP_MAX 1000 |
| 112 | |
| 113 | /** |
| 114 | * select_channel() - Select a SPU channel to handle a crypto request. Selects |
| 115 | * channel in round robin order. |
| 116 | * |
| 117 | * Return: channel index |
| 118 | */ |
| 119 | static u8 select_channel(void) |
| 120 | { |
| 121 | u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan); |
| 122 | |
| 123 | return chan_idx % iproc_priv.spu.num_spu; |
| 124 | } |
| 125 | |
| 126 | /** |
| 127 | * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to |
| 128 | * receive a SPU response message for an ablkcipher request. Includes buffers to |
| 129 | * catch SPU message headers and the response data. |
| 130 | * @mssg: mailbox message containing the receive sg |
| 131 | * @rctx: crypto request context |
| 132 | * @rx_frag_num: number of scatterlist elements required to hold the |
| 133 | * SPU response message |
| 134 | * @chunksize: Number of bytes of response data expected |
| 135 | * @stat_pad_len: Number of bytes required to pad the STAT field to |
| 136 | * a 4-byte boundary |
| 137 | * |
| 138 | * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() |
| 139 | * when the request completes, whether the request is handled successfully or |
| 140 | * there is an error. |
| 141 | * |
| 142 | * Returns: |
| 143 | * 0 if successful |
| 144 | * < 0 if an error |
| 145 | */ |
| 146 | static int |
| 147 | spu_ablkcipher_rx_sg_create(struct brcm_message *mssg, |
| 148 | struct iproc_reqctx_s *rctx, |
| 149 | u8 rx_frag_num, |
| 150 | unsigned int chunksize, u32 stat_pad_len) |
| 151 | { |
| 152 | struct spu_hw *spu = &iproc_priv.spu; |
| 153 | struct scatterlist *sg; /* used to build sgs in mbox message */ |
| 154 | struct iproc_ctx_s *ctx = rctx->ctx; |
| 155 | u32 datalen; /* Number of bytes of response data expected */ |
| 156 | |
| 157 | mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), |
| 158 | rctx->gfp); |
| 159 | if (!mssg->spu.dst) |
| 160 | return -ENOMEM; |
| 161 | |
| 162 | sg = mssg->spu.dst; |
| 163 | sg_init_table(sg, rx_frag_num); |
| 164 | /* Space for SPU message header */ |
| 165 | sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); |
| 166 | |
| 167 | /* If XTS tweak in payload, add buffer to receive encrypted tweak */ |
| 168 | if ((ctx->cipher.mode == CIPHER_MODE_XTS) && |
| 169 | spu->spu_xts_tweak_in_payload()) |
| 170 | sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, |
| 171 | SPU_XTS_TWEAK_SIZE); |
| 172 | |
| 173 | /* Copy in each dst sg entry from request, up to chunksize */ |
| 174 | datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, |
| 175 | rctx->dst_nents, chunksize); |
| 176 | if (datalen < chunksize) { |
| 177 | pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u", |
| 178 | __func__, chunksize, datalen); |
| 179 | return -EFAULT; |
| 180 | } |
| 181 | |
| 182 | if (ctx->cipher.alg == CIPHER_ALG_RC4) |
| 183 | /* Add buffer to catch 260-byte SUPDT field for RC4 */ |
| 184 | sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN); |
| 185 | |
| 186 | if (stat_pad_len) |
| 187 | sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); |
| 188 | |
| 189 | memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); |
| 190 | sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); |
| 191 | |
| 192 | return 0; |
| 193 | } |
| 194 | |
| 195 | /** |
| 196 | * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to |
| 197 | * send a SPU request message for an ablkcipher request. Includes SPU message |
| 198 | * headers and the request data. |
| 199 | * @mssg: mailbox message containing the transmit sg |
| 200 | * @rctx: crypto request context |
| 201 | * @tx_frag_num: number of scatterlist elements required to construct the |
| 202 | * SPU request message |
| 203 | * @chunksize: Number of bytes of request data |
| 204 | * @pad_len: Number of pad bytes |
| 205 | * |
| 206 | * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() |
| 207 | * when the request completes, whether the request is handled successfully or |
| 208 | * there is an error. |
| 209 | * |
| 210 | * Returns: |
| 211 | * 0 if successful |
| 212 | * < 0 if an error |
| 213 | */ |
| 214 | static int |
| 215 | spu_ablkcipher_tx_sg_create(struct brcm_message *mssg, |
| 216 | struct iproc_reqctx_s *rctx, |
| 217 | u8 tx_frag_num, unsigned int chunksize, u32 pad_len) |
| 218 | { |
| 219 | struct spu_hw *spu = &iproc_priv.spu; |
| 220 | struct scatterlist *sg; /* used to build sgs in mbox message */ |
| 221 | struct iproc_ctx_s *ctx = rctx->ctx; |
| 222 | u32 datalen; /* Number of bytes of response data expected */ |
| 223 | u32 stat_len; |
| 224 | |
| 225 | mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), |
| 226 | rctx->gfp); |
| 227 | if (unlikely(!mssg->spu.src)) |
| 228 | return -ENOMEM; |
| 229 | |
| 230 | sg = mssg->spu.src; |
| 231 | sg_init_table(sg, tx_frag_num); |
| 232 | |
| 233 | sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, |
| 234 | BCM_HDR_LEN + ctx->spu_req_hdr_len); |
| 235 | |
| 236 | /* if XTS tweak in payload, copy from IV (where crypto API puts it) */ |
| 237 | if ((ctx->cipher.mode == CIPHER_MODE_XTS) && |
| 238 | spu->spu_xts_tweak_in_payload()) |
| 239 | sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE); |
| 240 | |
| 241 | /* Copy in each src sg entry from request, up to chunksize */ |
| 242 | datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, |
| 243 | rctx->src_nents, chunksize); |
| 244 | if (unlikely(datalen < chunksize)) { |
| 245 | pr_err("%s(): failed to copy src sg to mbox msg", |
| 246 | __func__); |
| 247 | return -EFAULT; |
| 248 | } |
| 249 | |
| 250 | if (pad_len) |
| 251 | sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); |
| 252 | |
| 253 | stat_len = spu->spu_tx_status_len(); |
| 254 | if (stat_len) { |
| 255 | memset(rctx->msg_buf.tx_stat, 0, stat_len); |
| 256 | sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); |
| 257 | } |
| 258 | return 0; |
| 259 | } |
| 260 | |
| 261 | /** |
| 262 | * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in |
| 263 | * a single SPU request message, starting at the current position in the request |
| 264 | * data. |
| 265 | * @rctx: Crypto request context |
| 266 | * |
| 267 | * This may be called on the crypto API thread, or, when a request is so large |
| 268 | * it must be broken into multiple SPU messages, on the thread used to invoke |
| 269 | * the response callback. When requests are broken into multiple SPU |
| 270 | * messages, we assume subsequent messages depend on previous results, and |
| 271 | * thus always wait for previous results before submitting the next message. |
| 272 | * Because requests are submitted in lock step like this, there is no need |
| 273 | * to synchronize access to request data structures. |
| 274 | * |
| 275 | * Return: -EINPROGRESS: request has been accepted and result will be returned |
| 276 | * asynchronously |
| 277 | * Any other value indicates an error |
| 278 | */ |
| 279 | static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx) |
| 280 | { |
| 281 | struct spu_hw *spu = &iproc_priv.spu; |
| 282 | struct crypto_async_request *areq = rctx->parent; |
| 283 | struct ablkcipher_request *req = |
| 284 | container_of(areq, struct ablkcipher_request, base); |
| 285 | struct iproc_ctx_s *ctx = rctx->ctx; |
| 286 | struct spu_cipher_parms cipher_parms; |
| 287 | int err = 0; |
| 288 | unsigned int chunksize = 0; /* Num bytes of request to submit */ |
| 289 | int remaining = 0; /* Bytes of request still to process */ |
| 290 | int chunk_start; /* Beginning of data for current SPU msg */ |
| 291 | |
| 292 | /* IV or ctr value to use in this SPU msg */ |
| 293 | u8 local_iv_ctr[MAX_IV_SIZE]; |
| 294 | u32 stat_pad_len; /* num bytes to align status field */ |
| 295 | u32 pad_len; /* total length of all padding */ |
| 296 | bool update_key = false; |
| 297 | struct brcm_message *mssg; /* mailbox message */ |
| 298 | int retry_cnt = 0; |
| 299 | |
| 300 | /* number of entries in src and dst sg in mailbox message. */ |
| 301 | u8 rx_frag_num = 2; /* response header and STATUS */ |
| 302 | u8 tx_frag_num = 1; /* request header */ |
| 303 | |
| 304 | flow_log("%s\n", __func__); |
| 305 | |
| 306 | cipher_parms.alg = ctx->cipher.alg; |
| 307 | cipher_parms.mode = ctx->cipher.mode; |
| 308 | cipher_parms.type = ctx->cipher_type; |
| 309 | cipher_parms.key_len = ctx->enckeylen; |
| 310 | cipher_parms.key_buf = ctx->enckey; |
| 311 | cipher_parms.iv_buf = local_iv_ctr; |
| 312 | cipher_parms.iv_len = rctx->iv_ctr_len; |
| 313 | |
| 314 | mssg = &rctx->mb_mssg; |
| 315 | chunk_start = rctx->src_sent; |
| 316 | remaining = rctx->total_todo - chunk_start; |
| 317 | |
| 318 | /* determine the chunk we are breaking off and update the indexes */ |
| 319 | if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && |
| 320 | (remaining > ctx->max_payload)) |
| 321 | chunksize = ctx->max_payload; |
| 322 | else |
| 323 | chunksize = remaining; |
| 324 | |
| 325 | rctx->src_sent += chunksize; |
| 326 | rctx->total_sent = rctx->src_sent; |
| 327 | |
| 328 | /* Count number of sg entries to be included in this request */ |
| 329 | rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); |
| 330 | rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); |
| 331 | |
| 332 | if ((ctx->cipher.mode == CIPHER_MODE_CBC) && |
| 333 | rctx->is_encrypt && chunk_start) |
| 334 | /* |
| 335 | * Encrypting non-first first chunk. Copy last block of |
| 336 | * previous result to IV for this chunk. |
| 337 | */ |
| 338 | sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr, |
| 339 | rctx->iv_ctr_len, |
| 340 | chunk_start - rctx->iv_ctr_len); |
| 341 | |
| 342 | if (rctx->iv_ctr_len) { |
| 343 | /* get our local copy of the iv */ |
| 344 | __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr, |
| 345 | rctx->iv_ctr_len); |
| 346 | |
| 347 | /* generate the next IV if possible */ |
| 348 | if ((ctx->cipher.mode == CIPHER_MODE_CBC) && |
| 349 | !rctx->is_encrypt) { |
| 350 | /* |
| 351 | * CBC Decrypt: next IV is the last ciphertext block in |
| 352 | * this chunk |
| 353 | */ |
| 354 | sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr, |
| 355 | rctx->iv_ctr_len, |
| 356 | rctx->src_sent - rctx->iv_ctr_len); |
| 357 | } else if (ctx->cipher.mode == CIPHER_MODE_CTR) { |
| 358 | /* |
| 359 | * The SPU hardware increments the counter once for |
| 360 | * each AES block of 16 bytes. So update the counter |
| 361 | * for the next chunk, if there is one. Note that for |
| 362 | * this chunk, the counter has already been copied to |
| 363 | * local_iv_ctr. We can assume a block size of 16, |
| 364 | * because we only support CTR mode for AES, not for |
| 365 | * any other cipher alg. |
| 366 | */ |
| 367 | add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4); |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | if (ctx->cipher.alg == CIPHER_ALG_RC4) { |
| 372 | rx_frag_num++; |
| 373 | if (chunk_start) { |
| 374 | /* |
| 375 | * for non-first RC4 chunks, use SUPDT from previous |
| 376 | * response as key for this chunk. |
| 377 | */ |
| 378 | cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak; |
| 379 | update_key = true; |
| 380 | cipher_parms.type = CIPHER_TYPE_UPDT; |
| 381 | } else if (!rctx->is_encrypt) { |
| 382 | /* |
| 383 | * First RC4 chunk. For decrypt, key in pre-built msg |
| 384 | * header may have been changed if encrypt required |
| 385 | * multiple chunks. So revert the key to the |
| 386 | * ctx->enckey value. |
| 387 | */ |
| 388 | update_key = true; |
| 389 | cipher_parms.type = CIPHER_TYPE_INIT; |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) |
| 394 | flow_log("max_payload infinite\n"); |
| 395 | else |
| 396 | flow_log("max_payload %u\n", ctx->max_payload); |
| 397 | |
| 398 | flow_log("sent:%u start:%u remains:%u size:%u\n", |
| 399 | rctx->src_sent, chunk_start, remaining, chunksize); |
| 400 | |
| 401 | /* Copy SPU header template created at setkey time */ |
| 402 | memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr, |
| 403 | sizeof(rctx->msg_buf.bcm_spu_req_hdr)); |
| 404 | |
| 405 | /* |
| 406 | * Pass SUPDT field as key. Key field in finish() call is only used |
| 407 | * when update_key has been set above for RC4. Will be ignored in |
| 408 | * all other cases. |
| 409 | */ |
| 410 | spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, |
| 411 | ctx->spu_req_hdr_len, !(rctx->is_encrypt), |
| 412 | &cipher_parms, update_key, chunksize); |
| 413 | |
| 414 | atomic64_add(chunksize, &iproc_priv.bytes_out); |
| 415 | |
| 416 | stat_pad_len = spu->spu_wordalign_padlen(chunksize); |
| 417 | if (stat_pad_len) |
| 418 | rx_frag_num++; |
| 419 | pad_len = stat_pad_len; |
| 420 | if (pad_len) { |
| 421 | tx_frag_num++; |
| 422 | spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0, |
| 423 | 0, ctx->auth.alg, ctx->auth.mode, |
| 424 | rctx->total_sent, stat_pad_len); |
| 425 | } |
| 426 | |
| 427 | spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, |
| 428 | ctx->spu_req_hdr_len); |
| 429 | packet_log("payload:\n"); |
| 430 | dump_sg(rctx->src_sg, rctx->src_skip, chunksize); |
| 431 | packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); |
| 432 | |
| 433 | /* |
| 434 | * Build mailbox message containing SPU request msg and rx buffers |
| 435 | * to catch response message |
| 436 | */ |
| 437 | memset(mssg, 0, sizeof(*mssg)); |
| 438 | mssg->type = BRCM_MESSAGE_SPU; |
| 439 | mssg->ctx = rctx; /* Will be returned in response */ |
| 440 | |
| 441 | /* Create rx scatterlist to catch result */ |
| 442 | rx_frag_num += rctx->dst_nents; |
| 443 | |
| 444 | if ((ctx->cipher.mode == CIPHER_MODE_XTS) && |
| 445 | spu->spu_xts_tweak_in_payload()) |
| 446 | rx_frag_num++; /* extra sg to insert tweak */ |
| 447 | |
| 448 | err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize, |
| 449 | stat_pad_len); |
| 450 | if (err) |
| 451 | return err; |
| 452 | |
| 453 | /* Create tx scatterlist containing SPU request message */ |
| 454 | tx_frag_num += rctx->src_nents; |
| 455 | if (spu->spu_tx_status_len()) |
| 456 | tx_frag_num++; |
| 457 | |
| 458 | if ((ctx->cipher.mode == CIPHER_MODE_XTS) && |
| 459 | spu->spu_xts_tweak_in_payload()) |
| 460 | tx_frag_num++; /* extra sg to insert tweak */ |
| 461 | |
| 462 | err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize, |
| 463 | pad_len); |
| 464 | if (err) |
| 465 | return err; |
| 466 | |
| 467 | err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx], mssg); |
| 468 | if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) { |
| 469 | while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) { |
| 470 | /* |
| 471 | * Mailbox queue is full. Since MAY_SLEEP is set, assume |
| 472 | * not in atomic context and we can wait and try again. |
| 473 | */ |
| 474 | retry_cnt++; |
| 475 | usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX); |
| 476 | err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx], |
| 477 | mssg); |
| 478 | atomic_inc(&iproc_priv.mb_no_spc); |
| 479 | } |
| 480 | } |
| 481 | if (unlikely(err < 0)) { |
| 482 | atomic_inc(&iproc_priv.mb_send_fail); |
| 483 | return err; |
| 484 | } |
| 485 | |
| 486 | return -EINPROGRESS; |
| 487 | } |
| 488 | |
| 489 | /** |
| 490 | * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the |
| 491 | * total received count for the request and updates global stats. |
| 492 | * @rctx: Crypto request context |
| 493 | */ |
| 494 | static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx) |
| 495 | { |
| 496 | struct spu_hw *spu = &iproc_priv.spu; |
| 497 | #ifdef DEBUG |
| 498 | struct crypto_async_request *areq = rctx->parent; |
| 499 | struct ablkcipher_request *req = ablkcipher_request_cast(areq); |
| 500 | #endif |
| 501 | struct iproc_ctx_s *ctx = rctx->ctx; |
| 502 | u32 payload_len; |
| 503 | |
| 504 | /* See how much data was returned */ |
| 505 | payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); |
| 506 | |
| 507 | /* |
| 508 | * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the |
| 509 | * encrypted tweak ("i") value; we don't count those. |
| 510 | */ |
| 511 | if ((ctx->cipher.mode == CIPHER_MODE_XTS) && |
| 512 | spu->spu_xts_tweak_in_payload() && |
| 513 | (payload_len >= SPU_XTS_TWEAK_SIZE)) |
| 514 | payload_len -= SPU_XTS_TWEAK_SIZE; |
| 515 | |
| 516 | atomic64_add(payload_len, &iproc_priv.bytes_in); |
| 517 | |
| 518 | flow_log("%s() offset: %u, bd_len: %u BD:\n", |
| 519 | __func__, rctx->total_received, payload_len); |
| 520 | |
| 521 | dump_sg(req->dst, rctx->total_received, payload_len); |
| 522 | if (ctx->cipher.alg == CIPHER_ALG_RC4) |
| 523 | packet_dump(" supdt ", rctx->msg_buf.c.supdt_tweak, |
| 524 | SPU_SUPDT_LEN); |
| 525 | |
| 526 | rctx->total_received += payload_len; |
| 527 | if (rctx->total_received == rctx->total_todo) { |
| 528 | atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]); |
| 529 | atomic_inc( |
| 530 | &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]); |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | /** |
| 535 | * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to |
| 536 | * receive a SPU response message for an ahash request. |
| 537 | * @mssg: mailbox message containing the receive sg |
| 538 | * @rctx: crypto request context |
| 539 | * @rx_frag_num: number of scatterlist elements required to hold the |
| 540 | * SPU response message |
| 541 | * @digestsize: length of hash digest, in bytes |
| 542 | * @stat_pad_len: Number of bytes required to pad the STAT field to |
| 543 | * a 4-byte boundary |
| 544 | * |
| 545 | * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() |
| 546 | * when the request completes, whether the request is handled successfully or |
| 547 | * there is an error. |
| 548 | * |
| 549 | * Return: |
| 550 | * 0 if successful |
| 551 | * < 0 if an error |
| 552 | */ |
| 553 | static int |
| 554 | spu_ahash_rx_sg_create(struct brcm_message *mssg, |
| 555 | struct iproc_reqctx_s *rctx, |
| 556 | u8 rx_frag_num, unsigned int digestsize, |
| 557 | u32 stat_pad_len) |
| 558 | { |
| 559 | struct spu_hw *spu = &iproc_priv.spu; |
| 560 | struct scatterlist *sg; /* used to build sgs in mbox message */ |
| 561 | struct iproc_ctx_s *ctx = rctx->ctx; |
| 562 | |
| 563 | mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), |
| 564 | rctx->gfp); |
| 565 | if (!mssg->spu.dst) |
| 566 | return -ENOMEM; |
| 567 | |
| 568 | sg = mssg->spu.dst; |
| 569 | sg_init_table(sg, rx_frag_num); |
| 570 | /* Space for SPU message header */ |
| 571 | sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); |
| 572 | |
| 573 | /* Space for digest */ |
| 574 | sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); |
| 575 | |
| 576 | if (stat_pad_len) |
| 577 | sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); |
| 578 | |
| 579 | memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); |
| 580 | sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); |
| 581 | return 0; |
| 582 | } |
| 583 | |
| 584 | /** |
| 585 | * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send |
| 586 | * a SPU request message for an ahash request. Includes SPU message headers and |
| 587 | * the request data. |
| 588 | * @mssg: mailbox message containing the transmit sg |
| 589 | * @rctx: crypto request context |
| 590 | * @tx_frag_num: number of scatterlist elements required to construct the |
| 591 | * SPU request message |
| 592 | * @spu_hdr_len: length in bytes of SPU message header |
| 593 | * @hash_carry_len: Number of bytes of data carried over from previous req |
| 594 | * @new_data_len: Number of bytes of new request data |
| 595 | * @pad_len: Number of pad bytes |
| 596 | * |
| 597 | * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() |
| 598 | * when the request completes, whether the request is handled successfully or |
| 599 | * there is an error. |
| 600 | * |
| 601 | * Return: |
| 602 | * 0 if successful |
| 603 | * < 0 if an error |
| 604 | */ |
| 605 | static int |
| 606 | spu_ahash_tx_sg_create(struct brcm_message *mssg, |
| 607 | struct iproc_reqctx_s *rctx, |
| 608 | u8 tx_frag_num, |
| 609 | u32 spu_hdr_len, |
| 610 | unsigned int hash_carry_len, |
| 611 | unsigned int new_data_len, u32 pad_len) |
| 612 | { |
| 613 | struct spu_hw *spu = &iproc_priv.spu; |
| 614 | struct scatterlist *sg; /* used to build sgs in mbox message */ |
| 615 | u32 datalen; /* Number of bytes of response data expected */ |
| 616 | u32 stat_len; |
| 617 | |
| 618 | mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), |
| 619 | rctx->gfp); |
| 620 | if (!mssg->spu.src) |
| 621 | return -ENOMEM; |
| 622 | |
| 623 | sg = mssg->spu.src; |
| 624 | sg_init_table(sg, tx_frag_num); |
| 625 | |
| 626 | sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, |
| 627 | BCM_HDR_LEN + spu_hdr_len); |
| 628 | |
| 629 | if (hash_carry_len) |
| 630 | sg_set_buf(sg++, rctx->hash_carry, hash_carry_len); |
| 631 | |
| 632 | if (new_data_len) { |
| 633 | /* Copy in each src sg entry from request, up to chunksize */ |
| 634 | datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, |
| 635 | rctx->src_nents, new_data_len); |
| 636 | if (datalen < new_data_len) { |
| 637 | pr_err("%s(): failed to copy src sg to mbox msg", |
| 638 | __func__); |
| 639 | return -EFAULT; |
| 640 | } |
| 641 | } |
| 642 | |
| 643 | if (pad_len) |
| 644 | sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); |
| 645 | |
| 646 | stat_len = spu->spu_tx_status_len(); |
| 647 | if (stat_len) { |
| 648 | memset(rctx->msg_buf.tx_stat, 0, stat_len); |
| 649 | sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); |
| 650 | } |
| 651 | |
| 652 | return 0; |
| 653 | } |
| 654 | |
| 655 | /** |
| 656 | * handle_ahash_req() - Process an asynchronous hash request from the crypto |
| 657 | * API. |
| 658 | * @rctx: Crypto request context |
| 659 | * |
| 660 | * Builds a SPU request message embedded in a mailbox message and submits the |
| 661 | * mailbox message on a selected mailbox channel. The SPU request message is |
| 662 | * constructed as a scatterlist, including entries from the crypto API's |
| 663 | * src scatterlist to avoid copying the data to be hashed. This function is |
| 664 | * called either on the thread from the crypto API, or, in the case that the |
| 665 | * crypto API request is too large to fit in a single SPU request message, |
| 666 | * on the thread that invokes the receive callback with a response message. |
| 667 | * Because some operations require the response from one chunk before the next |
| 668 | * chunk can be submitted, we always wait for the response for the previous |
| 669 | * chunk before submitting the next chunk. Because requests are submitted in |
| 670 | * lock step like this, there is no need to synchronize access to request data |
| 671 | * structures. |
| 672 | * |
| 673 | * Return: |
| 674 | * -EINPROGRESS: request has been submitted to SPU and response will be |
| 675 | * returned asynchronously |
| 676 | * -EAGAIN: non-final request included a small amount of data, which for |
| 677 | * efficiency we did not submit to the SPU, but instead stored |
| 678 | * to be submitted to the SPU with the next part of the request |
| 679 | * other: an error code |
| 680 | */ |
| 681 | static int handle_ahash_req(struct iproc_reqctx_s *rctx) |
| 682 | { |
| 683 | struct spu_hw *spu = &iproc_priv.spu; |
| 684 | struct crypto_async_request *areq = rctx->parent; |
| 685 | struct ahash_request *req = ahash_request_cast(areq); |
| 686 | struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); |
| 687 | struct crypto_tfm *tfm = crypto_ahash_tfm(ahash); |
| 688 | unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); |
| 689 | struct iproc_ctx_s *ctx = rctx->ctx; |
| 690 | |
| 691 | /* number of bytes still to be hashed in this req */ |
| 692 | unsigned int nbytes_to_hash = 0; |
| 693 | int err = 0; |
| 694 | unsigned int chunksize = 0; /* length of hash carry + new data */ |
| 695 | /* |
| 696 | * length of new data, not from hash carry, to be submitted in |
| 697 | * this hw request |
| 698 | */ |
| 699 | unsigned int new_data_len; |
| 700 | |
| 701 | unsigned int chunk_start = 0; |
| 702 | u32 db_size; /* Length of data field, incl gcm and hash padding */ |
| 703 | int pad_len = 0; /* total pad len, including gcm, hash, stat padding */ |
| 704 | u32 data_pad_len = 0; /* length of GCM/CCM padding */ |
| 705 | u32 stat_pad_len = 0; /* length of padding to align STATUS word */ |
| 706 | struct brcm_message *mssg; /* mailbox message */ |
| 707 | struct spu_request_opts req_opts; |
| 708 | struct spu_cipher_parms cipher_parms; |
| 709 | struct spu_hash_parms hash_parms; |
| 710 | struct spu_aead_parms aead_parms; |
| 711 | unsigned int local_nbuf; |
| 712 | u32 spu_hdr_len; |
| 713 | unsigned int digestsize; |
| 714 | u16 rem = 0; |
| 715 | int retry_cnt = 0; |
| 716 | |
| 717 | /* |
| 718 | * number of entries in src and dst sg. Always includes SPU msg header. |
| 719 | * rx always includes a buffer to catch digest and STATUS. |
| 720 | */ |
| 721 | u8 rx_frag_num = 3; |
| 722 | u8 tx_frag_num = 1; |
| 723 | |
| 724 | flow_log("total_todo %u, total_sent %u\n", |
| 725 | rctx->total_todo, rctx->total_sent); |
| 726 | |
| 727 | memset(&req_opts, 0, sizeof(req_opts)); |
| 728 | memset(&cipher_parms, 0, sizeof(cipher_parms)); |
| 729 | memset(&hash_parms, 0, sizeof(hash_parms)); |
| 730 | memset(&aead_parms, 0, sizeof(aead_parms)); |
| 731 | |
| 732 | req_opts.bd_suppress = true; |
| 733 | hash_parms.alg = ctx->auth.alg; |
| 734 | hash_parms.mode = ctx->auth.mode; |
| 735 | hash_parms.type = HASH_TYPE_NONE; |
| 736 | hash_parms.key_buf = (u8 *)ctx->authkey; |
| 737 | hash_parms.key_len = ctx->authkeylen; |
| 738 | |
| 739 | /* |
| 740 | * For hash algorithms below assignment looks bit odd but |
| 741 | * it's needed for AES-XCBC and AES-CMAC hash algorithms |
| 742 | * to differentiate between 128, 192, 256 bit key values. |
| 743 | * Based on the key values, hash algorithm is selected. |
| 744 | * For example for 128 bit key, hash algorithm is AES-128. |
| 745 | */ |
| 746 | cipher_parms.type = ctx->cipher_type; |
| 747 | |
| 748 | mssg = &rctx->mb_mssg; |
| 749 | chunk_start = rctx->src_sent; |
| 750 | |
| 751 | /* |
| 752 | * Compute the amount remaining to hash. This may include data |
| 753 | * carried over from previous requests. |
| 754 | */ |
| 755 | nbytes_to_hash = rctx->total_todo - rctx->total_sent; |
| 756 | chunksize = nbytes_to_hash; |
| 757 | if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && |
| 758 | (chunksize > ctx->max_payload)) |
| 759 | chunksize = ctx->max_payload; |
| 760 | |
| 761 | /* |
| 762 | * If this is not a final request and the request data is not a multiple |
| 763 | * of a full block, then simply park the extra data and prefix it to the |
| 764 | * data for the next request. |
| 765 | */ |
| 766 | if (!rctx->is_final) { |
| 767 | u8 *dest = rctx->hash_carry + rctx->hash_carry_len; |
| 768 | u16 new_len; /* len of data to add to hash carry */ |
| 769 | |
| 770 | rem = chunksize % blocksize; /* remainder */ |
| 771 | if (rem) { |
| 772 | /* chunksize not a multiple of blocksize */ |
| 773 | chunksize -= rem; |
| 774 | if (chunksize == 0) { |
| 775 | /* Don't have a full block to submit to hw */ |
| 776 | new_len = rem - rctx->hash_carry_len; |
| 777 | sg_copy_part_to_buf(req->src, dest, new_len, |
| 778 | rctx->src_sent); |
| 779 | rctx->hash_carry_len = rem; |
| 780 | flow_log("Exiting with hash carry len: %u\n", |
| 781 | rctx->hash_carry_len); |
| 782 | packet_dump(" buf: ", |
| 783 | rctx->hash_carry, |
| 784 | rctx->hash_carry_len); |
| 785 | return -EAGAIN; |
| 786 | } |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | /* if we have hash carry, then prefix it to the data in this request */ |
| 791 | local_nbuf = rctx->hash_carry_len; |
| 792 | rctx->hash_carry_len = 0; |
| 793 | if (local_nbuf) |
| 794 | tx_frag_num++; |
| 795 | new_data_len = chunksize - local_nbuf; |
| 796 | |
| 797 | /* Count number of sg entries to be used in this request */ |
| 798 | rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, |
| 799 | new_data_len); |
| 800 | |
| 801 | /* AES hashing keeps key size in type field, so need to copy it here */ |
| 802 | if (hash_parms.alg == HASH_ALG_AES) |
| 803 | hash_parms.type = cipher_parms.type; |
| 804 | else |
| 805 | hash_parms.type = spu->spu_hash_type(rctx->total_sent); |
| 806 | |
| 807 | digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg, |
| 808 | hash_parms.type); |
| 809 | hash_parms.digestsize = digestsize; |
| 810 | |
| 811 | /* update the indexes */ |
| 812 | rctx->total_sent += chunksize; |
| 813 | /* if you sent a prebuf then that wasn't from this req->src */ |
| 814 | rctx->src_sent += new_data_len; |
| 815 | |
| 816 | if ((rctx->total_sent == rctx->total_todo) && rctx->is_final) |
| 817 | hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg, |
| 818 | hash_parms.mode, |
| 819 | chunksize, |
| 820 | blocksize); |
| 821 | |
| 822 | /* |
| 823 | * If a non-first chunk, then include the digest returned from the |
| 824 | * previous chunk so that hw can add to it (except for AES types). |
| 825 | */ |
| 826 | if ((hash_parms.type == HASH_TYPE_UPDT) && |
| 827 | (hash_parms.alg != HASH_ALG_AES)) { |
| 828 | hash_parms.key_buf = rctx->incr_hash; |
| 829 | hash_parms.key_len = digestsize; |
| 830 | } |
| 831 | |
| 832 | atomic64_add(chunksize, &iproc_priv.bytes_out); |
| 833 | |
| 834 | flow_log("%s() final: %u nbuf: %u ", |
| 835 | __func__, rctx->is_final, local_nbuf); |
| 836 | |
| 837 | if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) |
| 838 | flow_log("max_payload infinite\n"); |
| 839 | else |
| 840 | flow_log("max_payload %u\n", ctx->max_payload); |
| 841 | |
| 842 | flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize); |
| 843 | |
| 844 | /* Prepend SPU header with type 3 BCM header */ |
| 845 | memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); |
| 846 | |
| 847 | hash_parms.prebuf_len = local_nbuf; |
| 848 | spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + |
| 849 | BCM_HDR_LEN, |
| 850 | &req_opts, &cipher_parms, |
| 851 | &hash_parms, &aead_parms, |
| 852 | new_data_len); |
| 853 | |
| 854 | if (spu_hdr_len == 0) { |
| 855 | pr_err("Failed to create SPU request header\n"); |
| 856 | return -EFAULT; |
| 857 | } |
| 858 | |
| 859 | /* |
| 860 | * Determine total length of padding required. Put all padding in one |
| 861 | * buffer. |
| 862 | */ |
| 863 | data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize); |
| 864 | db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len, |
| 865 | 0, 0, hash_parms.pad_len); |
| 866 | if (spu->spu_tx_status_len()) |
| 867 | stat_pad_len = spu->spu_wordalign_padlen(db_size); |
| 868 | if (stat_pad_len) |
| 869 | rx_frag_num++; |
| 870 | pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len; |
| 871 | if (pad_len) { |
| 872 | tx_frag_num++; |
| 873 | spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len, |
| 874 | hash_parms.pad_len, ctx->auth.alg, |
| 875 | ctx->auth.mode, rctx->total_sent, |
| 876 | stat_pad_len); |
| 877 | } |
| 878 | |
| 879 | spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, |
| 880 | spu_hdr_len); |
| 881 | packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf); |
| 882 | flow_log("Data:\n"); |
| 883 | dump_sg(rctx->src_sg, rctx->src_skip, new_data_len); |
| 884 | packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); |
| 885 | |
| 886 | /* |
| 887 | * Build mailbox message containing SPU request msg and rx buffers |
| 888 | * to catch response message |
| 889 | */ |
| 890 | memset(mssg, 0, sizeof(*mssg)); |
| 891 | mssg->type = BRCM_MESSAGE_SPU; |
| 892 | mssg->ctx = rctx; /* Will be returned in response */ |
| 893 | |
| 894 | /* Create rx scatterlist to catch result */ |
| 895 | err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize, |
| 896 | stat_pad_len); |
| 897 | if (err) |
| 898 | return err; |
| 899 | |
| 900 | /* Create tx scatterlist containing SPU request message */ |
| 901 | tx_frag_num += rctx->src_nents; |
| 902 | if (spu->spu_tx_status_len()) |
| 903 | tx_frag_num++; |
| 904 | err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, |
| 905 | local_nbuf, new_data_len, pad_len); |
| 906 | if (err) |
| 907 | return err; |
| 908 | |
| 909 | err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx], mssg); |
| 910 | if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) { |
| 911 | while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) { |
| 912 | /* |
| 913 | * Mailbox queue is full. Since MAY_SLEEP is set, assume |
| 914 | * not in atomic context and we can wait and try again. |
| 915 | */ |
| 916 | retry_cnt++; |
| 917 | usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX); |
| 918 | err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx], |
| 919 | mssg); |
| 920 | atomic_inc(&iproc_priv.mb_no_spc); |
| 921 | } |
| 922 | } |
| 923 | if (err < 0) { |
| 924 | atomic_inc(&iproc_priv.mb_send_fail); |
| 925 | return err; |
| 926 | } |
| 927 | return -EINPROGRESS; |
| 928 | } |
| 929 | |
| 930 | /** |
| 931 | * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash |
| 932 | * for an HMAC request. |
| 933 | * @req: The HMAC request from the crypto API |
| 934 | * @ctx: The session context |
| 935 | * |
| 936 | * Return: 0 if synchronous hash operation successful |
| 937 | * -EINVAL if the hash algo is unrecognized |
| 938 | * any other value indicates an error |
| 939 | */ |
| 940 | static int spu_hmac_outer_hash(struct ahash_request *req, |
| 941 | struct iproc_ctx_s *ctx) |
| 942 | { |
| 943 | struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); |
| 944 | unsigned int blocksize = |
| 945 | crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); |
| 946 | int rc; |
| 947 | |
| 948 | switch (ctx->auth.alg) { |
| 949 | case HASH_ALG_MD5: |
| 950 | rc = do_shash("md5", req->result, ctx->opad, blocksize, |
| 951 | req->result, ctx->digestsize, NULL, 0); |
| 952 | break; |
| 953 | case HASH_ALG_SHA1: |
| 954 | rc = do_shash("sha1", req->result, ctx->opad, blocksize, |
| 955 | req->result, ctx->digestsize, NULL, 0); |
| 956 | break; |
| 957 | case HASH_ALG_SHA224: |
| 958 | rc = do_shash("sha224", req->result, ctx->opad, blocksize, |
| 959 | req->result, ctx->digestsize, NULL, 0); |
| 960 | break; |
| 961 | case HASH_ALG_SHA256: |
| 962 | rc = do_shash("sha256", req->result, ctx->opad, blocksize, |
| 963 | req->result, ctx->digestsize, NULL, 0); |
| 964 | break; |
| 965 | case HASH_ALG_SHA384: |
| 966 | rc = do_shash("sha384", req->result, ctx->opad, blocksize, |
| 967 | req->result, ctx->digestsize, NULL, 0); |
| 968 | break; |
| 969 | case HASH_ALG_SHA512: |
| 970 | rc = do_shash("sha512", req->result, ctx->opad, blocksize, |
| 971 | req->result, ctx->digestsize, NULL, 0); |
| 972 | break; |
| 973 | default: |
| 974 | pr_err("%s() Error : unknown hmac type\n", __func__); |
| 975 | rc = -EINVAL; |
| 976 | } |
| 977 | return rc; |
| 978 | } |
| 979 | |
| 980 | /** |
| 981 | * ahash_req_done() - Process a hash result from the SPU hardware. |
| 982 | * @rctx: Crypto request context |
| 983 | * |
| 984 | * Return: 0 if successful |
| 985 | * < 0 if an error |
| 986 | */ |
| 987 | static int ahash_req_done(struct iproc_reqctx_s *rctx) |
| 988 | { |
| 989 | struct spu_hw *spu = &iproc_priv.spu; |
| 990 | struct crypto_async_request *areq = rctx->parent; |
| 991 | struct ahash_request *req = ahash_request_cast(areq); |
| 992 | struct iproc_ctx_s *ctx = rctx->ctx; |
| 993 | int err; |
| 994 | |
| 995 | memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize); |
| 996 | |
| 997 | if (spu->spu_type == SPU_TYPE_SPUM) { |
| 998 | /* byte swap the output from the UPDT function to network byte |
| 999 | * order |
| 1000 | */ |
| 1001 | if (ctx->auth.alg == HASH_ALG_MD5) { |
| 1002 | __swab32s((u32 *)req->result); |
| 1003 | __swab32s(((u32 *)req->result) + 1); |
| 1004 | __swab32s(((u32 *)req->result) + 2); |
| 1005 | __swab32s(((u32 *)req->result) + 3); |
| 1006 | __swab32s(((u32 *)req->result) + 4); |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | flow_dump(" digest ", req->result, ctx->digestsize); |
| 1011 | |
| 1012 | /* if this an HMAC then do the outer hash */ |
| 1013 | if (rctx->is_sw_hmac) { |
| 1014 | err = spu_hmac_outer_hash(req, ctx); |
| 1015 | if (err < 0) |
| 1016 | return err; |
| 1017 | flow_dump(" hmac: ", req->result, ctx->digestsize); |
| 1018 | } |
| 1019 | |
| 1020 | if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) { |
| 1021 | atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]); |
| 1022 | atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]); |
| 1023 | } else { |
| 1024 | atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]); |
| 1025 | atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]); |
| 1026 | } |
| 1027 | |
| 1028 | return 0; |
| 1029 | } |
| 1030 | |
| 1031 | /** |
| 1032 | * handle_ahash_resp() - Process a SPU response message for a hash request. |
| 1033 | * Checks if the entire crypto API request has been processed, and if so, |
| 1034 | * invokes post processing on the result. |
| 1035 | * @rctx: Crypto request context |
| 1036 | */ |
| 1037 | static void handle_ahash_resp(struct iproc_reqctx_s *rctx) |
| 1038 | { |
| 1039 | struct iproc_ctx_s *ctx = rctx->ctx; |
| 1040 | #ifdef DEBUG |
| 1041 | struct crypto_async_request *areq = rctx->parent; |
| 1042 | struct ahash_request *req = ahash_request_cast(areq); |
| 1043 | struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); |
| 1044 | unsigned int blocksize = |
| 1045 | crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); |
| 1046 | #endif |
| 1047 | /* |
| 1048 | * Save hash to use as input to next op if incremental. Might be copying |
| 1049 | * too much, but that's easier than figuring out actual digest size here |
| 1050 | */ |
| 1051 | memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE); |
| 1052 | |
| 1053 | flow_log("%s() blocksize:%u digestsize:%u\n", |
| 1054 | __func__, blocksize, ctx->digestsize); |
| 1055 | |
| 1056 | atomic64_add(ctx->digestsize, &iproc_priv.bytes_in); |
| 1057 | |
| 1058 | if (rctx->is_final && (rctx->total_sent == rctx->total_todo)) |
| 1059 | ahash_req_done(rctx); |
| 1060 | } |
| 1061 | |
| 1062 | /** |
| 1063 | * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive |
| 1064 | * a SPU response message for an AEAD request. Includes buffers to catch SPU |
| 1065 | * message headers and the response data. |
| 1066 | * @mssg: mailbox message containing the receive sg |
| 1067 | * @rctx: crypto request context |
| 1068 | * @rx_frag_num: number of scatterlist elements required to hold the |
| 1069 | * SPU response message |
| 1070 | * @assoc_len: Length of associated data included in the crypto request |
| 1071 | * @ret_iv_len: Length of IV returned in response |
| 1072 | * @resp_len: Number of bytes of response data expected to be written to |
| 1073 | * dst buffer from crypto API |
| 1074 | * @digestsize: Length of hash digest, in bytes |
| 1075 | * @stat_pad_len: Number of bytes required to pad the STAT field to |
| 1076 | * a 4-byte boundary |
| 1077 | * |
| 1078 | * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() |
| 1079 | * when the request completes, whether the request is handled successfully or |
| 1080 | * there is an error. |
| 1081 | * |
| 1082 | * Returns: |
| 1083 | * 0 if successful |
| 1084 | * < 0 if an error |
| 1085 | */ |
| 1086 | static int spu_aead_rx_sg_create(struct brcm_message *mssg, |
| 1087 | struct aead_request *req, |
| 1088 | struct iproc_reqctx_s *rctx, |
| 1089 | u8 rx_frag_num, |
| 1090 | unsigned int assoc_len, |
| 1091 | u32 ret_iv_len, unsigned int resp_len, |
| 1092 | unsigned int digestsize, u32 stat_pad_len) |
| 1093 | { |
| 1094 | struct spu_hw *spu = &iproc_priv.spu; |
| 1095 | struct scatterlist *sg; /* used to build sgs in mbox message */ |
| 1096 | struct iproc_ctx_s *ctx = rctx->ctx; |
| 1097 | u32 datalen; /* Number of bytes of response data expected */ |
| 1098 | u32 assoc_buf_len; |
| 1099 | u8 data_padlen = 0; |
| 1100 | |
| 1101 | if (ctx->is_rfc4543) { |
| 1102 | /* RFC4543: only pad after data, not after AAD */ |
| 1103 | data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, |
| 1104 | assoc_len + resp_len); |
| 1105 | assoc_buf_len = assoc_len; |
| 1106 | } else { |
| 1107 | data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, |
| 1108 | resp_len); |
| 1109 | assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode, |
| 1110 | assoc_len, ret_iv_len, |
| 1111 | rctx->is_encrypt); |
| 1112 | } |
| 1113 | |
| 1114 | if (ctx->cipher.mode == CIPHER_MODE_CCM) |
| 1115 | /* ICV (after data) must be in the next 32-bit word for CCM */ |
| 1116 | data_padlen += spu->spu_wordalign_padlen(assoc_buf_len + |
| 1117 | resp_len + |
| 1118 | data_padlen); |
| 1119 | |
| 1120 | if (data_padlen) |
| 1121 | /* have to catch gcm pad in separate buffer */ |
| 1122 | rx_frag_num++; |
| 1123 | |
| 1124 | mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), |
| 1125 | rctx->gfp); |
| 1126 | if (!mssg->spu.dst) |
| 1127 | return -ENOMEM; |
| 1128 | |
| 1129 | sg = mssg->spu.dst; |
| 1130 | sg_init_table(sg, rx_frag_num); |
| 1131 | |
| 1132 | /* Space for SPU message header */ |
| 1133 | sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); |
| 1134 | |
| 1135 | if (assoc_buf_len) { |
| 1136 | /* |
| 1137 | * Don't write directly to req->dst, because SPU may pad the |
| 1138 | * assoc data in the response |
| 1139 | */ |
| 1140 | memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len); |
| 1141 | sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len); |
| 1142 | } |
| 1143 | |
| 1144 | if (resp_len) { |
| 1145 | /* |
| 1146 | * Copy in each dst sg entry from request, up to chunksize. |
| 1147 | * dst sg catches just the data. digest caught in separate buf. |
| 1148 | */ |
| 1149 | datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, |
| 1150 | rctx->dst_nents, resp_len); |
| 1151 | if (datalen < (resp_len)) { |
| 1152 | pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u", |
| 1153 | __func__, resp_len, datalen); |
| 1154 | return -EFAULT; |
| 1155 | } |
| 1156 | } |
| 1157 | |
| 1158 | /* If GCM/CCM data is padded, catch padding in separate buffer */ |
| 1159 | if (data_padlen) { |
| 1160 | memset(rctx->msg_buf.a.gcmpad, 0, data_padlen); |
| 1161 | sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen); |
| 1162 | } |
| 1163 | |
| 1164 | /* Always catch ICV in separate buffer */ |
| 1165 | sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); |
| 1166 | |
| 1167 | flow_log("stat_pad_len %u\n", stat_pad_len); |
| 1168 | if (stat_pad_len) { |
| 1169 | memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len); |
| 1170 | sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); |
| 1171 | } |
| 1172 | |
| 1173 | memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); |
| 1174 | sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); |
| 1175 | |
| 1176 | return 0; |
| 1177 | } |
| 1178 | |
| 1179 | /** |
| 1180 | * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a |
| 1181 | * SPU request message for an AEAD request. Includes SPU message headers and the |
| 1182 | * request data. |
| 1183 | * @mssg: mailbox message containing the transmit sg |
| 1184 | * @rctx: crypto request context |
| 1185 | * @tx_frag_num: number of scatterlist elements required to construct the |
| 1186 | * SPU request message |
| 1187 | * @spu_hdr_len: length of SPU message header in bytes |
| 1188 | * @assoc: crypto API associated data scatterlist |
| 1189 | * @assoc_len: length of associated data |
| 1190 | * @assoc_nents: number of scatterlist entries containing assoc data |
| 1191 | * @aead_iv_len: length of AEAD IV, if included |
| 1192 | * @chunksize: Number of bytes of request data |
| 1193 | * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM. |
| 1194 | * @pad_len: Number of pad bytes |
| 1195 | * @incl_icv: If true, write separate ICV buffer after data and |
| 1196 | * any padding |
| 1197 | * |
| 1198 | * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() |
| 1199 | * when the request completes, whether the request is handled successfully or |
| 1200 | * there is an error. |
| 1201 | * |
| 1202 | * Return: |
| 1203 | * 0 if successful |
| 1204 | * < 0 if an error |
| 1205 | */ |
| 1206 | static int spu_aead_tx_sg_create(struct brcm_message *mssg, |
| 1207 | struct iproc_reqctx_s *rctx, |
| 1208 | u8 tx_frag_num, |
| 1209 | u32 spu_hdr_len, |
| 1210 | struct scatterlist *assoc, |
| 1211 | unsigned int assoc_len, |
| 1212 | int assoc_nents, |
| 1213 | unsigned int aead_iv_len, |
| 1214 | unsigned int chunksize, |
| 1215 | u32 aad_pad_len, u32 pad_len, bool incl_icv) |
| 1216 | { |
| 1217 | struct spu_hw *spu = &iproc_priv.spu; |
| 1218 | struct scatterlist *sg; /* used to build sgs in mbox message */ |
| 1219 | struct scatterlist *assoc_sg = assoc; |
| 1220 | struct iproc_ctx_s *ctx = rctx->ctx; |
| 1221 | u32 datalen; /* Number of bytes of data to write */ |
| 1222 | u32 written; /* Number of bytes of data written */ |
| 1223 | u32 assoc_offset = 0; |
| 1224 | u32 stat_len; |
| 1225 | |
| 1226 | mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), |
| 1227 | rctx->gfp); |
| 1228 | if (!mssg->spu.src) |
| 1229 | return -ENOMEM; |
| 1230 | |
| 1231 | sg = mssg->spu.src; |
| 1232 | sg_init_table(sg, tx_frag_num); |
| 1233 | |
| 1234 | sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, |
| 1235 | BCM_HDR_LEN + spu_hdr_len); |
| 1236 | |
| 1237 | if (assoc_len) { |
| 1238 | /* Copy in each associated data sg entry from request */ |
| 1239 | written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset, |
| 1240 | assoc_nents, assoc_len); |
| 1241 | if (written < assoc_len) { |
| 1242 | pr_err("%s(): failed to copy assoc sg to mbox msg", |
| 1243 | __func__); |
| 1244 | return -EFAULT; |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | if (aead_iv_len) |
| 1249 | sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len); |
| 1250 | |
| 1251 | if (aad_pad_len) { |
| 1252 | memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len); |
| 1253 | sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len); |
| 1254 | } |
| 1255 | |
| 1256 | datalen = chunksize; |
| 1257 | if ((chunksize > ctx->digestsize) && incl_icv) |
| 1258 | datalen -= ctx->digestsize; |
| 1259 | if (datalen) { |
| 1260 | /* For aead, a single msg should consume the entire src sg */ |
| 1261 | written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, |
| 1262 | rctx->src_nents, datalen); |
| 1263 | if (written < datalen) { |
| 1264 | pr_err("%s(): failed to copy src sg to mbox msg", |
| 1265 | __func__); |
| 1266 | return -EFAULT; |
| 1267 | } |
| 1268 | } |
| 1269 | |
| 1270 | if (pad_len) { |
| 1271 | memset(rctx->msg_buf.spu_req_pad, 0, pad_len); |
| 1272 | sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); |
| 1273 | } |
| 1274 | |
| 1275 | if (incl_icv) |
| 1276 | sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize); |
| 1277 | |
| 1278 | stat_len = spu->spu_tx_status_len(); |
| 1279 | if (stat_len) { |
| 1280 | memset(rctx->msg_buf.tx_stat, 0, stat_len); |
| 1281 | sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); |
| 1282 | } |
| 1283 | return 0; |
| 1284 | } |
| 1285 | |
| 1286 | /** |
| 1287 | * handle_aead_req() - Submit a SPU request message for the next chunk of the |
| 1288 | * current AEAD request. |
| 1289 | * @rctx: Crypto request context |
| 1290 | * |
| 1291 | * Unlike other operation types, we assume the length of the request fits in |
| 1292 | * a single SPU request message. aead_enqueue() makes sure this is true. |
| 1293 | * Comments for other op types regarding threads applies here as well. |
| 1294 | * |
| 1295 | * Unlike incremental hash ops, where the spu returns the entire hash for |
| 1296 | * truncated algs like sha-224, the SPU returns just the truncated hash in |
| 1297 | * response to aead requests. So digestsize is always ctx->digestsize here. |
| 1298 | * |
| 1299 | * Return: -EINPROGRESS: crypto request has been accepted and result will be |
| 1300 | * returned asynchronously |
| 1301 | * Any other value indicates an error |
| 1302 | */ |
| 1303 | static int handle_aead_req(struct iproc_reqctx_s *rctx) |
| 1304 | { |
| 1305 | struct spu_hw *spu = &iproc_priv.spu; |
| 1306 | struct crypto_async_request *areq = rctx->parent; |
| 1307 | struct aead_request *req = container_of(areq, |
| 1308 | struct aead_request, base); |
| 1309 | struct iproc_ctx_s *ctx = rctx->ctx; |
| 1310 | int err; |
| 1311 | unsigned int chunksize; |
| 1312 | unsigned int resp_len; |
| 1313 | u32 spu_hdr_len; |
| 1314 | u32 db_size; |
| 1315 | u32 stat_pad_len; |
| 1316 | u32 pad_len; |
| 1317 | struct brcm_message *mssg; /* mailbox message */ |
| 1318 | struct spu_request_opts req_opts; |
| 1319 | struct spu_cipher_parms cipher_parms; |
| 1320 | struct spu_hash_parms hash_parms; |
| 1321 | struct spu_aead_parms aead_parms; |
| 1322 | int assoc_nents = 0; |
| 1323 | bool incl_icv = false; |
| 1324 | unsigned int digestsize = ctx->digestsize; |
| 1325 | int retry_cnt = 0; |
| 1326 | |
| 1327 | /* number of entries in src and dst sg. Always includes SPU msg header. |
| 1328 | */ |
| 1329 | u8 rx_frag_num = 2; /* and STATUS */ |
| 1330 | u8 tx_frag_num = 1; |
| 1331 | |
| 1332 | /* doing the whole thing at once */ |
| 1333 | chunksize = rctx->total_todo; |
| 1334 | |
| 1335 | flow_log("%s: chunksize %u\n", __func__, chunksize); |
| 1336 | |
| 1337 | memset(&req_opts, 0, sizeof(req_opts)); |
| 1338 | memset(&hash_parms, 0, sizeof(hash_parms)); |
| 1339 | memset(&aead_parms, 0, sizeof(aead_parms)); |
| 1340 | |
| 1341 | req_opts.is_inbound = !(rctx->is_encrypt); |
| 1342 | req_opts.auth_first = ctx->auth_first; |
| 1343 | req_opts.is_aead = true; |
| 1344 | req_opts.is_esp = ctx->is_esp; |
| 1345 | |
| 1346 | cipher_parms.alg = ctx->cipher.alg; |
| 1347 | cipher_parms.mode = ctx->cipher.mode; |
| 1348 | cipher_parms.type = ctx->cipher_type; |
| 1349 | cipher_parms.key_buf = ctx->enckey; |
| 1350 | cipher_parms.key_len = ctx->enckeylen; |
| 1351 | cipher_parms.iv_buf = rctx->msg_buf.iv_ctr; |
| 1352 | cipher_parms.iv_len = rctx->iv_ctr_len; |
| 1353 | |
| 1354 | hash_parms.alg = ctx->auth.alg; |
| 1355 | hash_parms.mode = ctx->auth.mode; |
| 1356 | hash_parms.type = HASH_TYPE_NONE; |
| 1357 | hash_parms.key_buf = (u8 *)ctx->authkey; |
| 1358 | hash_parms.key_len = ctx->authkeylen; |
| 1359 | hash_parms.digestsize = digestsize; |
| 1360 | |
| 1361 | if ((ctx->auth.alg == HASH_ALG_SHA224) && |
| 1362 | (ctx->authkeylen < SHA224_DIGEST_SIZE)) |
| 1363 | hash_parms.key_len = SHA224_DIGEST_SIZE; |
| 1364 | |
| 1365 | aead_parms.assoc_size = req->assoclen; |
| 1366 | if (ctx->is_esp && !ctx->is_rfc4543) { |
| 1367 | /* |
| 1368 | * 8-byte IV is included assoc data in request. SPU2 |
| 1369 | * expects AAD to include just SPI and seqno. So |
| 1370 | * subtract off the IV len. |
| 1371 | */ |
| 1372 | aead_parms.assoc_size -= GCM_ESP_IV_SIZE; |
| 1373 | |
| 1374 | if (rctx->is_encrypt) { |
| 1375 | aead_parms.return_iv = true; |
| 1376 | aead_parms.ret_iv_len = GCM_ESP_IV_SIZE; |
| 1377 | aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE; |
| 1378 | } |
| 1379 | } else { |
| 1380 | aead_parms.ret_iv_len = 0; |
| 1381 | } |
| 1382 | |
| 1383 | /* |
| 1384 | * Count number of sg entries from the crypto API request that are to |
| 1385 | * be included in this mailbox message. For dst sg, don't count space |
| 1386 | * for digest. Digest gets caught in a separate buffer and copied back |
| 1387 | * to dst sg when processing response. |
| 1388 | */ |
| 1389 | rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); |
| 1390 | rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); |
| 1391 | if (aead_parms.assoc_size) |
| 1392 | assoc_nents = spu_sg_count(rctx->assoc, 0, |
| 1393 | aead_parms.assoc_size); |
| 1394 | |
| 1395 | mssg = &rctx->mb_mssg; |
| 1396 | |
| 1397 | rctx->total_sent = chunksize; |
| 1398 | rctx->src_sent = chunksize; |
| 1399 | if (spu->spu_assoc_resp_len(ctx->cipher.mode, |
| 1400 | aead_parms.assoc_size, |
| 1401 | aead_parms.ret_iv_len, |
| 1402 | rctx->is_encrypt)) |
| 1403 | rx_frag_num++; |
| 1404 | |
| 1405 | aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode, |
| 1406 | rctx->iv_ctr_len); |
| 1407 | |
| 1408 | if (ctx->auth.alg == HASH_ALG_AES) |
| 1409 | hash_parms.type = ctx->cipher_type; |
| 1410 | |
| 1411 | /* General case AAD padding (CCM and RFC4543 special cases below) */ |
| 1412 | aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, |
| 1413 | aead_parms.assoc_size); |
| 1414 | |
| 1415 | /* General case data padding (CCM decrypt special case below) */ |
| 1416 | aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, |
| 1417 | chunksize); |
| 1418 | |
| 1419 | if (ctx->cipher.mode == CIPHER_MODE_CCM) { |
| 1420 | /* |
| 1421 | * for CCM, AAD len + 2 (rather than AAD len) needs to be |
| 1422 | * 128-bit aligned |
| 1423 | */ |
| 1424 | aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len( |
| 1425 | ctx->cipher.mode, |
| 1426 | aead_parms.assoc_size + 2); |
| 1427 | |
| 1428 | /* |
| 1429 | * And when decrypting CCM, need to pad without including |
| 1430 | * size of ICV which is tacked on to end of chunk |
| 1431 | */ |
| 1432 | if (!rctx->is_encrypt) |
| 1433 | aead_parms.data_pad_len = |
| 1434 | spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, |
| 1435 | chunksize - digestsize); |
| 1436 | |
| 1437 | /* CCM also requires software to rewrite portions of IV: */ |
| 1438 | spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen, |
| 1439 | chunksize, rctx->is_encrypt, |
| 1440 | ctx->is_esp); |
| 1441 | } |
| 1442 | |
| 1443 | if (ctx->is_rfc4543) { |
| 1444 | /* |
| 1445 | * RFC4543: data is included in AAD, so don't pad after AAD |
| 1446 | * and pad data based on both AAD + data size |
| 1447 | */ |
| 1448 | aead_parms.aad_pad_len = 0; |
| 1449 | if (!rctx->is_encrypt) |
| 1450 | aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( |
| 1451 | ctx->cipher.mode, |
| 1452 | aead_parms.assoc_size + chunksize - |
| 1453 | digestsize); |
| 1454 | else |
| 1455 | aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( |
| 1456 | ctx->cipher.mode, |
| 1457 | aead_parms.assoc_size + chunksize); |
| 1458 | |
| 1459 | req_opts.is_rfc4543 = true; |
| 1460 | } |
| 1461 | |
| 1462 | if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) { |
| 1463 | incl_icv = true; |
| 1464 | tx_frag_num++; |
| 1465 | /* Copy ICV from end of src scatterlist to digest buf */ |
| 1466 | sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize, |
| 1467 | req->assoclen + rctx->total_sent - |
| 1468 | digestsize); |
| 1469 | } |
| 1470 | |
| 1471 | atomic64_add(chunksize, &iproc_priv.bytes_out); |
| 1472 | |
| 1473 | flow_log("%s()-sent chunksize:%u\n", __func__, chunksize); |
| 1474 | |
| 1475 | /* Prepend SPU header with type 3 BCM header */ |
| 1476 | memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); |
| 1477 | |
| 1478 | spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + |
| 1479 | BCM_HDR_LEN, &req_opts, |
| 1480 | &cipher_parms, &hash_parms, |
| 1481 | &aead_parms, chunksize); |
| 1482 | |
| 1483 | /* Determine total length of padding. Put all padding in one buffer. */ |
| 1484 | db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0, |
| 1485 | chunksize, aead_parms.aad_pad_len, |
| 1486 | aead_parms.data_pad_len, 0); |
| 1487 | |
| 1488 | stat_pad_len = spu->spu_wordalign_padlen(db_size); |
| 1489 | |
| 1490 | if (stat_pad_len) |
| 1491 | rx_frag_num++; |
| 1492 | pad_len = aead_parms.data_pad_len + stat_pad_len; |
| 1493 | if (pad_len) { |
| 1494 | tx_frag_num++; |
| 1495 | spu->spu_request_pad(rctx->msg_buf.spu_req_pad, |
| 1496 | aead_parms.data_pad_len, 0, |
| 1497 | ctx->auth.alg, ctx->auth.mode, |
| 1498 | rctx->total_sent, stat_pad_len); |
| 1499 | } |
| 1500 | |
| 1501 | spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, |
| 1502 | spu_hdr_len); |
| 1503 | dump_sg(rctx->assoc, 0, aead_parms.assoc_size); |
| 1504 | packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len); |
| 1505 | packet_log("BD:\n"); |
| 1506 | dump_sg(rctx->src_sg, rctx->src_skip, chunksize); |
| 1507 | packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); |
| 1508 | |
| 1509 | /* |
| 1510 | * Build mailbox message containing SPU request msg and rx buffers |
| 1511 | * to catch response message |
| 1512 | */ |
| 1513 | memset(mssg, 0, sizeof(*mssg)); |
| 1514 | mssg->type = BRCM_MESSAGE_SPU; |
| 1515 | mssg->ctx = rctx; /* Will be returned in response */ |
| 1516 | |
| 1517 | /* Create rx scatterlist to catch result */ |
| 1518 | rx_frag_num += rctx->dst_nents; |
| 1519 | resp_len = chunksize; |
| 1520 | |
| 1521 | /* |
| 1522 | * Always catch ICV in separate buffer. Have to for GCM/CCM because of |
| 1523 | * padding. Have to for SHA-224 and other truncated SHAs because SPU |
| 1524 | * sends entire digest back. |
| 1525 | */ |
| 1526 | rx_frag_num++; |
| 1527 | |
| 1528 | if (((ctx->cipher.mode == CIPHER_MODE_GCM) || |
| 1529 | (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) { |
| 1530 | /* |
| 1531 | * Input is ciphertxt plus ICV, but ICV not incl |
| 1532 | * in output. |
| 1533 | */ |
| 1534 | resp_len -= ctx->digestsize; |
| 1535 | if (resp_len == 0) |
| 1536 | /* no rx frags to catch output data */ |
| 1537 | rx_frag_num -= rctx->dst_nents; |
| 1538 | } |
| 1539 | |
| 1540 | err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num, |
| 1541 | aead_parms.assoc_size, |
| 1542 | aead_parms.ret_iv_len, resp_len, digestsize, |
| 1543 | stat_pad_len); |
| 1544 | if (err) |
| 1545 | return err; |
| 1546 | |
| 1547 | /* Create tx scatterlist containing SPU request message */ |
| 1548 | tx_frag_num += rctx->src_nents; |
| 1549 | tx_frag_num += assoc_nents; |
| 1550 | if (aead_parms.aad_pad_len) |
| 1551 | tx_frag_num++; |
| 1552 | if (aead_parms.iv_len) |
| 1553 | tx_frag_num++; |
| 1554 | if (spu->spu_tx_status_len()) |
| 1555 | tx_frag_num++; |
| 1556 | err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, |
| 1557 | rctx->assoc, aead_parms.assoc_size, |
| 1558 | assoc_nents, aead_parms.iv_len, chunksize, |
| 1559 | aead_parms.aad_pad_len, pad_len, incl_icv); |
| 1560 | if (err) |
| 1561 | return err; |
| 1562 | |
| 1563 | err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx], mssg); |
| 1564 | if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) { |
| 1565 | while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) { |
| 1566 | /* |
| 1567 | * Mailbox queue is full. Since MAY_SLEEP is set, assume |
| 1568 | * not in atomic context and we can wait and try again. |
| 1569 | */ |
| 1570 | retry_cnt++; |
| 1571 | usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX); |
| 1572 | err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx], |
| 1573 | mssg); |
| 1574 | atomic_inc(&iproc_priv.mb_no_spc); |
| 1575 | } |
| 1576 | } |
| 1577 | if (err < 0) { |
| 1578 | atomic_inc(&iproc_priv.mb_send_fail); |
| 1579 | return err; |
| 1580 | } |
| 1581 | |
| 1582 | return -EINPROGRESS; |
| 1583 | } |
| 1584 | |
| 1585 | /** |
| 1586 | * handle_aead_resp() - Process a SPU response message for an AEAD request. |
| 1587 | * @rctx: Crypto request context |
| 1588 | */ |
| 1589 | static void handle_aead_resp(struct iproc_reqctx_s *rctx) |
| 1590 | { |
| 1591 | struct spu_hw *spu = &iproc_priv.spu; |
| 1592 | struct crypto_async_request *areq = rctx->parent; |
| 1593 | struct aead_request *req = container_of(areq, |
| 1594 | struct aead_request, base); |
| 1595 | struct iproc_ctx_s *ctx = rctx->ctx; |
| 1596 | u32 payload_len; |
| 1597 | unsigned int icv_offset; |
| 1598 | u32 result_len; |
| 1599 | |
| 1600 | /* See how much data was returned */ |
| 1601 | payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); |
| 1602 | flow_log("payload_len %u\n", payload_len); |
| 1603 | |
| 1604 | /* only count payload */ |
| 1605 | atomic64_add(payload_len, &iproc_priv.bytes_in); |
| 1606 | |
| 1607 | if (req->assoclen) |
| 1608 | packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad, |
| 1609 | req->assoclen); |
| 1610 | |
| 1611 | /* |
| 1612 | * Copy the ICV back to the destination |
| 1613 | * buffer. In decrypt case, SPU gives us back the digest, but crypto |
| 1614 | * API doesn't expect ICV in dst buffer. |
| 1615 | */ |
| 1616 | result_len = req->cryptlen; |
| 1617 | if (rctx->is_encrypt) { |
| 1618 | icv_offset = req->assoclen + rctx->total_sent; |
| 1619 | packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize); |
| 1620 | flow_log("copying ICV to dst sg at offset %u\n", icv_offset); |
| 1621 | sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest, |
| 1622 | ctx->digestsize, icv_offset); |
| 1623 | result_len += ctx->digestsize; |
| 1624 | } |
| 1625 | |
| 1626 | packet_log("response data: "); |
| 1627 | dump_sg(req->dst, req->assoclen, result_len); |
| 1628 | |
| 1629 | atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]); |
| 1630 | if (ctx->cipher.alg == CIPHER_ALG_AES) { |
| 1631 | if (ctx->cipher.mode == CIPHER_MODE_CCM) |
| 1632 | atomic_inc(&iproc_priv.aead_cnt[AES_CCM]); |
| 1633 | else if (ctx->cipher.mode == CIPHER_MODE_GCM) |
| 1634 | atomic_inc(&iproc_priv.aead_cnt[AES_GCM]); |
| 1635 | else |
| 1636 | atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); |
| 1637 | } else { |
| 1638 | atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); |
| 1639 | } |
| 1640 | } |
| 1641 | |
| 1642 | /** |
| 1643 | * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request |
| 1644 | * @rctx: request context |
| 1645 | * |
| 1646 | * Mailbox scatterlists are allocated for each chunk. So free them after |
| 1647 | * processing each chunk. |
| 1648 | */ |
| 1649 | static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx) |
| 1650 | { |
| 1651 | /* mailbox message used to tx request */ |
| 1652 | struct brcm_message *mssg = &rctx->mb_mssg; |
| 1653 | |
| 1654 | kfree(mssg->spu.src); |
| 1655 | kfree(mssg->spu.dst); |
| 1656 | memset(mssg, 0, sizeof(struct brcm_message)); |
| 1657 | } |
| 1658 | |
| 1659 | /** |
| 1660 | * finish_req() - Used to invoke the complete callback from the requester when |
| 1661 | * a request has been handled asynchronously. |
| 1662 | * @rctx: Request context |
| 1663 | * @err: Indicates whether the request was successful or not |
| 1664 | * |
| 1665 | * Ensures that cleanup has been done for request |
| 1666 | */ |
| 1667 | static void finish_req(struct iproc_reqctx_s *rctx, int err) |
| 1668 | { |
| 1669 | struct crypto_async_request *areq = rctx->parent; |
| 1670 | |
| 1671 | flow_log("%s() err:%d\n\n", __func__, err); |
| 1672 | |
| 1673 | /* No harm done if already called */ |
| 1674 | spu_chunk_cleanup(rctx); |
| 1675 | |
| 1676 | if (areq) |
| 1677 | areq->complete(areq, err); |
| 1678 | } |
| 1679 | |
| 1680 | /** |
| 1681 | * spu_rx_callback() - Callback from mailbox framework with a SPU response. |
| 1682 | * @cl: mailbox client structure for SPU driver |
| 1683 | * @msg: mailbox message containing SPU response |
| 1684 | */ |
| 1685 | static void spu_rx_callback(struct mbox_client *cl, void *msg) |
| 1686 | { |
| 1687 | struct spu_hw *spu = &iproc_priv.spu; |
| 1688 | struct brcm_message *mssg = msg; |
| 1689 | struct iproc_reqctx_s *rctx; |
| 1690 | struct iproc_ctx_s *ctx; |
| 1691 | struct crypto_async_request *areq; |
| 1692 | int err = 0; |
| 1693 | |
| 1694 | rctx = mssg->ctx; |
| 1695 | if (unlikely(!rctx)) { |
| 1696 | /* This is fatal */ |
| 1697 | pr_err("%s(): no request context", __func__); |
| 1698 | err = -EFAULT; |
| 1699 | goto cb_finish; |
| 1700 | } |
| 1701 | areq = rctx->parent; |
| 1702 | ctx = rctx->ctx; |
| 1703 | |
| 1704 | /* process the SPU status */ |
| 1705 | err = spu->spu_status_process(rctx->msg_buf.rx_stat); |
| 1706 | if (err != 0) { |
| 1707 | if (err == SPU_INVALID_ICV) |
| 1708 | atomic_inc(&iproc_priv.bad_icv); |
| 1709 | err = -EBADMSG; |
| 1710 | goto cb_finish; |
| 1711 | } |
| 1712 | |
| 1713 | /* Process the SPU response message */ |
| 1714 | switch (rctx->ctx->alg->type) { |
| 1715 | case CRYPTO_ALG_TYPE_ABLKCIPHER: |
| 1716 | handle_ablkcipher_resp(rctx); |
| 1717 | break; |
| 1718 | case CRYPTO_ALG_TYPE_AHASH: |
| 1719 | handle_ahash_resp(rctx); |
| 1720 | break; |
| 1721 | case CRYPTO_ALG_TYPE_AEAD: |
| 1722 | handle_aead_resp(rctx); |
| 1723 | break; |
| 1724 | default: |
| 1725 | err = -EINVAL; |
| 1726 | goto cb_finish; |
| 1727 | } |
| 1728 | |
| 1729 | /* |
| 1730 | * If this response does not complete the request, then send the next |
| 1731 | * request chunk. |
| 1732 | */ |
| 1733 | if (rctx->total_sent < rctx->total_todo) { |
| 1734 | /* Deallocate anything specific to previous chunk */ |
| 1735 | spu_chunk_cleanup(rctx); |
| 1736 | |
| 1737 | switch (rctx->ctx->alg->type) { |
| 1738 | case CRYPTO_ALG_TYPE_ABLKCIPHER: |
| 1739 | err = handle_ablkcipher_req(rctx); |
| 1740 | break; |
| 1741 | case CRYPTO_ALG_TYPE_AHASH: |
| 1742 | err = handle_ahash_req(rctx); |
| 1743 | if (err == -EAGAIN) |
| 1744 | /* |
| 1745 | * we saved data in hash carry, but tell crypto |
| 1746 | * API we successfully completed request. |
| 1747 | */ |
| 1748 | err = 0; |
| 1749 | break; |
| 1750 | case CRYPTO_ALG_TYPE_AEAD: |
| 1751 | err = handle_aead_req(rctx); |
| 1752 | break; |
| 1753 | default: |
| 1754 | err = -EINVAL; |
| 1755 | } |
| 1756 | |
| 1757 | if (err == -EINPROGRESS) |
| 1758 | /* Successfully submitted request for next chunk */ |
| 1759 | return; |
| 1760 | } |
| 1761 | |
| 1762 | cb_finish: |
| 1763 | finish_req(rctx, err); |
| 1764 | } |
| 1765 | |
| 1766 | /* ==================== Kernel Cryptographic API ==================== */ |
| 1767 | |
| 1768 | /** |
| 1769 | * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request. |
| 1770 | * @req: Crypto API request |
| 1771 | * @encrypt: true if encrypting; false if decrypting |
| 1772 | * |
| 1773 | * Return: -EINPROGRESS if request accepted and result will be returned |
| 1774 | * asynchronously |
| 1775 | * < 0 if an error |
| 1776 | */ |
| 1777 | static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt) |
| 1778 | { |
| 1779 | struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req); |
| 1780 | struct iproc_ctx_s *ctx = |
| 1781 | crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); |
| 1782 | int err; |
| 1783 | |
| 1784 | flow_log("%s() enc:%u\n", __func__, encrypt); |
| 1785 | |
| 1786 | rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | |
| 1787 | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; |
| 1788 | rctx->parent = &req->base; |
| 1789 | rctx->is_encrypt = encrypt; |
| 1790 | rctx->bd_suppress = false; |
| 1791 | rctx->total_todo = req->nbytes; |
| 1792 | rctx->src_sent = 0; |
| 1793 | rctx->total_sent = 0; |
| 1794 | rctx->total_received = 0; |
| 1795 | rctx->ctx = ctx; |
| 1796 | |
| 1797 | /* Initialize current position in src and dst scatterlists */ |
| 1798 | rctx->src_sg = req->src; |
| 1799 | rctx->src_nents = 0; |
| 1800 | rctx->src_skip = 0; |
| 1801 | rctx->dst_sg = req->dst; |
| 1802 | rctx->dst_nents = 0; |
| 1803 | rctx->dst_skip = 0; |
| 1804 | |
| 1805 | if (ctx->cipher.mode == CIPHER_MODE_CBC || |
| 1806 | ctx->cipher.mode == CIPHER_MODE_CTR || |
| 1807 | ctx->cipher.mode == CIPHER_MODE_OFB || |
| 1808 | ctx->cipher.mode == CIPHER_MODE_XTS || |
| 1809 | ctx->cipher.mode == CIPHER_MODE_GCM || |
| 1810 | ctx->cipher.mode == CIPHER_MODE_CCM) { |
| 1811 | rctx->iv_ctr_len = |
| 1812 | crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req)); |
| 1813 | memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len); |
| 1814 | } else { |
| 1815 | rctx->iv_ctr_len = 0; |
| 1816 | } |
| 1817 | |
| 1818 | /* Choose a SPU to process this request */ |
| 1819 | rctx->chan_idx = select_channel(); |
| 1820 | err = handle_ablkcipher_req(rctx); |
| 1821 | if (err != -EINPROGRESS) |
| 1822 | /* synchronous result */ |
| 1823 | spu_chunk_cleanup(rctx); |
| 1824 | |
| 1825 | return err; |
| 1826 | } |
| 1827 | |
| 1828 | static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| 1829 | unsigned int keylen) |
| 1830 | { |
| 1831 | struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); |
| 1832 | u32 tmp[DES_EXPKEY_WORDS]; |
| 1833 | |
| 1834 | if (keylen == DES_KEY_SIZE) { |
| 1835 | if (des_ekey(tmp, key) == 0) { |
| 1836 | if (crypto_ablkcipher_get_flags(cipher) & |
| 1837 | CRYPTO_TFM_REQ_WEAK_KEY) { |
| 1838 | u32 flags = CRYPTO_TFM_RES_WEAK_KEY; |
| 1839 | |
| 1840 | crypto_ablkcipher_set_flags(cipher, flags); |
| 1841 | return -EINVAL; |
| 1842 | } |
| 1843 | } |
| 1844 | |
| 1845 | ctx->cipher_type = CIPHER_TYPE_DES; |
| 1846 | } else { |
| 1847 | crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 1848 | return -EINVAL; |
| 1849 | } |
| 1850 | return 0; |
| 1851 | } |
| 1852 | |
| 1853 | static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| 1854 | unsigned int keylen) |
| 1855 | { |
| 1856 | struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); |
| 1857 | |
| 1858 | if (keylen == (DES_KEY_SIZE * 3)) { |
| 1859 | const u32 *K = (const u32 *)key; |
| 1860 | u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED; |
| 1861 | |
| 1862 | if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) || |
| 1863 | !((K[2] ^ K[4]) | (K[3] ^ K[5]))) { |
| 1864 | crypto_ablkcipher_set_flags(cipher, flags); |
| 1865 | return -EINVAL; |
| 1866 | } |
| 1867 | |
| 1868 | ctx->cipher_type = CIPHER_TYPE_3DES; |
| 1869 | } else { |
| 1870 | crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 1871 | return -EINVAL; |
| 1872 | } |
| 1873 | return 0; |
| 1874 | } |
| 1875 | |
| 1876 | static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| 1877 | unsigned int keylen) |
| 1878 | { |
| 1879 | struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); |
| 1880 | |
| 1881 | if (ctx->cipher.mode == CIPHER_MODE_XTS) |
| 1882 | /* XTS includes two keys of equal length */ |
| 1883 | keylen = keylen / 2; |
| 1884 | |
| 1885 | switch (keylen) { |
| 1886 | case AES_KEYSIZE_128: |
| 1887 | ctx->cipher_type = CIPHER_TYPE_AES128; |
| 1888 | break; |
| 1889 | case AES_KEYSIZE_192: |
| 1890 | ctx->cipher_type = CIPHER_TYPE_AES192; |
| 1891 | break; |
| 1892 | case AES_KEYSIZE_256: |
| 1893 | ctx->cipher_type = CIPHER_TYPE_AES256; |
| 1894 | break; |
| 1895 | default: |
| 1896 | crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 1897 | return -EINVAL; |
| 1898 | } |
| 1899 | WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && |
| 1900 | ((ctx->max_payload % AES_BLOCK_SIZE) != 0)); |
| 1901 | return 0; |
| 1902 | } |
| 1903 | |
| 1904 | static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| 1905 | unsigned int keylen) |
| 1906 | { |
| 1907 | struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); |
| 1908 | int i; |
| 1909 | |
| 1910 | ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE; |
| 1911 | |
| 1912 | ctx->enckey[0] = 0x00; /* 0x00 */ |
| 1913 | ctx->enckey[1] = 0x00; /* i */ |
| 1914 | ctx->enckey[2] = 0x00; /* 0x00 */ |
| 1915 | ctx->enckey[3] = 0x00; /* j */ |
| 1916 | for (i = 0; i < ARC4_MAX_KEY_SIZE; i++) |
| 1917 | ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen]; |
| 1918 | |
| 1919 | ctx->cipher_type = CIPHER_TYPE_INIT; |
| 1920 | |
| 1921 | return 0; |
| 1922 | } |
| 1923 | |
| 1924 | static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| 1925 | unsigned int keylen) |
| 1926 | { |
| 1927 | struct spu_hw *spu = &iproc_priv.spu; |
| 1928 | struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); |
| 1929 | struct spu_cipher_parms cipher_parms; |
| 1930 | u32 alloc_len = 0; |
| 1931 | int err; |
| 1932 | |
| 1933 | flow_log("ablkcipher_setkey() keylen: %d\n", keylen); |
| 1934 | flow_dump(" key: ", key, keylen); |
| 1935 | |
| 1936 | switch (ctx->cipher.alg) { |
| 1937 | case CIPHER_ALG_DES: |
| 1938 | err = des_setkey(cipher, key, keylen); |
| 1939 | break; |
| 1940 | case CIPHER_ALG_3DES: |
| 1941 | err = threedes_setkey(cipher, key, keylen); |
| 1942 | break; |
| 1943 | case CIPHER_ALG_AES: |
| 1944 | err = aes_setkey(cipher, key, keylen); |
| 1945 | break; |
| 1946 | case CIPHER_ALG_RC4: |
| 1947 | err = rc4_setkey(cipher, key, keylen); |
| 1948 | break; |
| 1949 | default: |
| 1950 | pr_err("%s() Error: unknown cipher alg\n", __func__); |
| 1951 | err = -EINVAL; |
| 1952 | } |
| 1953 | if (err) |
| 1954 | return err; |
| 1955 | |
| 1956 | /* RC4 already populated ctx->enkey */ |
| 1957 | if (ctx->cipher.alg != CIPHER_ALG_RC4) { |
| 1958 | memcpy(ctx->enckey, key, keylen); |
| 1959 | ctx->enckeylen = keylen; |
| 1960 | } |
| 1961 | /* SPU needs XTS keys in the reverse order the crypto API presents */ |
| 1962 | if ((ctx->cipher.alg == CIPHER_ALG_AES) && |
| 1963 | (ctx->cipher.mode == CIPHER_MODE_XTS)) { |
| 1964 | unsigned int xts_keylen = keylen / 2; |
| 1965 | |
| 1966 | memcpy(ctx->enckey, key + xts_keylen, xts_keylen); |
| 1967 | memcpy(ctx->enckey + xts_keylen, key, xts_keylen); |
| 1968 | } |
| 1969 | |
| 1970 | if (spu->spu_type == SPU_TYPE_SPUM) |
| 1971 | alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN; |
| 1972 | else if (spu->spu_type == SPU_TYPE_SPU2) |
| 1973 | alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN; |
| 1974 | memset(ctx->bcm_spu_req_hdr, 0, alloc_len); |
| 1975 | cipher_parms.iv_buf = NULL; |
| 1976 | cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher); |
| 1977 | flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len); |
| 1978 | |
| 1979 | cipher_parms.alg = ctx->cipher.alg; |
| 1980 | cipher_parms.mode = ctx->cipher.mode; |
| 1981 | cipher_parms.type = ctx->cipher_type; |
| 1982 | cipher_parms.key_buf = ctx->enckey; |
| 1983 | cipher_parms.key_len = ctx->enckeylen; |
| 1984 | |
| 1985 | /* Prepend SPU request message with BCM header */ |
| 1986 | memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); |
| 1987 | ctx->spu_req_hdr_len = |
| 1988 | spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN, |
| 1989 | &cipher_parms); |
| 1990 | |
| 1991 | ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, |
| 1992 | ctx->enckeylen, |
| 1993 | false); |
| 1994 | |
| 1995 | atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]); |
| 1996 | |
| 1997 | return 0; |
| 1998 | } |
| 1999 | |
| 2000 | static int ablkcipher_encrypt(struct ablkcipher_request *req) |
| 2001 | { |
| 2002 | flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes); |
| 2003 | |
| 2004 | return ablkcipher_enqueue(req, true); |
| 2005 | } |
| 2006 | |
| 2007 | static int ablkcipher_decrypt(struct ablkcipher_request *req) |
| 2008 | { |
| 2009 | flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes); |
| 2010 | return ablkcipher_enqueue(req, false); |
| 2011 | } |
| 2012 | |
| 2013 | static int ahash_enqueue(struct ahash_request *req) |
| 2014 | { |
| 2015 | struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| 2016 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 2017 | struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| 2018 | int err = 0; |
| 2019 | const char *alg_name; |
| 2020 | |
| 2021 | flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes); |
| 2022 | |
| 2023 | rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | |
| 2024 | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; |
| 2025 | rctx->parent = &req->base; |
| 2026 | rctx->ctx = ctx; |
| 2027 | rctx->bd_suppress = true; |
| 2028 | memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); |
| 2029 | |
| 2030 | /* Initialize position in src scatterlist */ |
| 2031 | rctx->src_sg = req->src; |
| 2032 | rctx->src_skip = 0; |
| 2033 | rctx->src_nents = 0; |
| 2034 | rctx->dst_sg = NULL; |
| 2035 | rctx->dst_skip = 0; |
| 2036 | rctx->dst_nents = 0; |
| 2037 | |
| 2038 | /* SPU2 hardware does not compute hash of zero length data */ |
| 2039 | if ((rctx->is_final == 1) && (rctx->total_todo == 0) && |
| 2040 | (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) { |
| 2041 | alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); |
| 2042 | flow_log("Doing %sfinal %s zero-len hash request in software\n", |
| 2043 | rctx->is_final ? "" : "non-", alg_name); |
| 2044 | err = do_shash((unsigned char *)alg_name, req->result, |
| 2045 | NULL, 0, NULL, 0, ctx->authkey, |
| 2046 | ctx->authkeylen); |
| 2047 | if (err < 0) |
| 2048 | flow_log("Hash request failed with error %d\n", err); |
| 2049 | return err; |
| 2050 | } |
| 2051 | /* Choose a SPU to process this request */ |
| 2052 | rctx->chan_idx = select_channel(); |
| 2053 | |
| 2054 | err = handle_ahash_req(rctx); |
| 2055 | if (err != -EINPROGRESS) |
| 2056 | /* synchronous result */ |
| 2057 | spu_chunk_cleanup(rctx); |
| 2058 | |
| 2059 | if (err == -EAGAIN) |
| 2060 | /* |
| 2061 | * we saved data in hash carry, but tell crypto API |
| 2062 | * we successfully completed request. |
| 2063 | */ |
| 2064 | err = 0; |
| 2065 | |
| 2066 | return err; |
| 2067 | } |
| 2068 | |
| 2069 | static int __ahash_init(struct ahash_request *req) |
| 2070 | { |
| 2071 | struct spu_hw *spu = &iproc_priv.spu; |
| 2072 | struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| 2073 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 2074 | struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| 2075 | |
| 2076 | flow_log("%s()\n", __func__); |
| 2077 | |
| 2078 | /* Initialize the context */ |
| 2079 | rctx->hash_carry_len = 0; |
| 2080 | rctx->is_final = 0; |
| 2081 | |
| 2082 | rctx->total_todo = 0; |
| 2083 | rctx->src_sent = 0; |
| 2084 | rctx->total_sent = 0; |
| 2085 | rctx->total_received = 0; |
| 2086 | |
| 2087 | ctx->digestsize = crypto_ahash_digestsize(tfm); |
| 2088 | /* If we add a hash whose digest is larger, catch it here. */ |
| 2089 | WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE); |
| 2090 | |
| 2091 | rctx->is_sw_hmac = false; |
| 2092 | |
| 2093 | ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0, |
| 2094 | true); |
| 2095 | |
| 2096 | return 0; |
| 2097 | } |
| 2098 | |
| 2099 | /** |
| 2100 | * spu_no_incr_hash() - Determine whether incremental hashing is supported. |
| 2101 | * @ctx: Crypto session context |
| 2102 | * |
| 2103 | * SPU-2 does not support incremental hashing (we'll have to revisit and |
| 2104 | * condition based on chip revision or device tree entry if future versions do |
| 2105 | * support incremental hash) |
| 2106 | * |
| 2107 | * SPU-M also doesn't support incremental hashing of AES-XCBC |
| 2108 | * |
| 2109 | * Return: true if incremental hashing is not supported |
| 2110 | * false otherwise |
| 2111 | */ |
| 2112 | bool spu_no_incr_hash(struct iproc_ctx_s *ctx) |
| 2113 | { |
| 2114 | struct spu_hw *spu = &iproc_priv.spu; |
| 2115 | |
| 2116 | if (spu->spu_type == SPU_TYPE_SPU2) |
| 2117 | return true; |
| 2118 | |
| 2119 | if ((ctx->auth.alg == HASH_ALG_AES) && |
| 2120 | (ctx->auth.mode == HASH_MODE_XCBC)) |
| 2121 | return true; |
| 2122 | |
| 2123 | /* Otherwise, incremental hashing is supported */ |
| 2124 | return false; |
| 2125 | } |
| 2126 | |
| 2127 | static int ahash_init(struct ahash_request *req) |
| 2128 | { |
| 2129 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 2130 | struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| 2131 | const char *alg_name; |
| 2132 | struct crypto_shash *hash; |
| 2133 | int ret; |
| 2134 | gfp_t gfp; |
| 2135 | |
| 2136 | if (spu_no_incr_hash(ctx)) { |
| 2137 | /* |
| 2138 | * If we get an incremental hashing request and it's not |
| 2139 | * supported by the hardware, we need to handle it in software |
| 2140 | * by calling synchronous hash functions. |
| 2141 | */ |
| 2142 | alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); |
| 2143 | hash = crypto_alloc_shash(alg_name, 0, 0); |
| 2144 | if (IS_ERR(hash)) { |
| 2145 | ret = PTR_ERR(hash); |
| 2146 | goto err; |
| 2147 | } |
| 2148 | |
| 2149 | gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | |
| 2150 | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; |
| 2151 | ctx->shash = kmalloc(sizeof(*ctx->shash) + |
| 2152 | crypto_shash_descsize(hash), gfp); |
| 2153 | if (!ctx->shash) { |
| 2154 | ret = -ENOMEM; |
| 2155 | goto err_hash; |
| 2156 | } |
| 2157 | ctx->shash->tfm = hash; |
| 2158 | ctx->shash->flags = 0; |
| 2159 | |
| 2160 | /* Set the key using data we already have from setkey */ |
| 2161 | if (ctx->authkeylen > 0) { |
| 2162 | ret = crypto_shash_setkey(hash, ctx->authkey, |
| 2163 | ctx->authkeylen); |
| 2164 | if (ret) |
| 2165 | goto err_shash; |
| 2166 | } |
| 2167 | |
| 2168 | /* Initialize hash w/ this key and other params */ |
| 2169 | ret = crypto_shash_init(ctx->shash); |
| 2170 | if (ret) |
| 2171 | goto err_shash; |
| 2172 | } else { |
| 2173 | /* Otherwise call the internal function which uses SPU hw */ |
| 2174 | ret = __ahash_init(req); |
| 2175 | } |
| 2176 | |
| 2177 | return ret; |
| 2178 | |
| 2179 | err_shash: |
| 2180 | kfree(ctx->shash); |
| 2181 | err_hash: |
| 2182 | crypto_free_shash(hash); |
| 2183 | err: |
| 2184 | return ret; |
| 2185 | } |
| 2186 | |
| 2187 | static int __ahash_update(struct ahash_request *req) |
| 2188 | { |
| 2189 | struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| 2190 | |
| 2191 | flow_log("ahash_update() nbytes:%u\n", req->nbytes); |
| 2192 | |
| 2193 | if (!req->nbytes) |
| 2194 | return 0; |
| 2195 | rctx->total_todo += req->nbytes; |
| 2196 | rctx->src_sent = 0; |
| 2197 | |
| 2198 | return ahash_enqueue(req); |
| 2199 | } |
| 2200 | |
| 2201 | static int ahash_update(struct ahash_request *req) |
| 2202 | { |
| 2203 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 2204 | struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| 2205 | u8 *tmpbuf; |
| 2206 | int ret; |
| 2207 | int nents; |
| 2208 | gfp_t gfp; |
| 2209 | |
| 2210 | if (spu_no_incr_hash(ctx)) { |
| 2211 | /* |
| 2212 | * If we get an incremental hashing request and it's not |
| 2213 | * supported by the hardware, we need to handle it in software |
| 2214 | * by calling synchronous hash functions. |
| 2215 | */ |
| 2216 | if (req->src) |
| 2217 | nents = sg_nents(req->src); |
| 2218 | else |
| 2219 | return -EINVAL; |
| 2220 | |
| 2221 | /* Copy data from req scatterlist to tmp buffer */ |
| 2222 | gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | |
| 2223 | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; |
| 2224 | tmpbuf = kmalloc(req->nbytes, gfp); |
| 2225 | if (!tmpbuf) |
| 2226 | return -ENOMEM; |
| 2227 | |
| 2228 | if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != |
| 2229 | req->nbytes) { |
| 2230 | kfree(tmpbuf); |
| 2231 | return -EINVAL; |
| 2232 | } |
| 2233 | |
| 2234 | /* Call synchronous update */ |
| 2235 | ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes); |
| 2236 | kfree(tmpbuf); |
| 2237 | } else { |
| 2238 | /* Otherwise call the internal function which uses SPU hw */ |
| 2239 | ret = __ahash_update(req); |
| 2240 | } |
| 2241 | |
| 2242 | return ret; |
| 2243 | } |
| 2244 | |
| 2245 | static int __ahash_final(struct ahash_request *req) |
| 2246 | { |
| 2247 | struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| 2248 | |
| 2249 | flow_log("ahash_final() nbytes:%u\n", req->nbytes); |
| 2250 | |
| 2251 | rctx->is_final = 1; |
| 2252 | |
| 2253 | return ahash_enqueue(req); |
| 2254 | } |
| 2255 | |
| 2256 | static int ahash_final(struct ahash_request *req) |
| 2257 | { |
| 2258 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 2259 | struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| 2260 | int ret; |
| 2261 | |
| 2262 | if (spu_no_incr_hash(ctx)) { |
| 2263 | /* |
| 2264 | * If we get an incremental hashing request and it's not |
| 2265 | * supported by the hardware, we need to handle it in software |
| 2266 | * by calling synchronous hash functions. |
| 2267 | */ |
| 2268 | ret = crypto_shash_final(ctx->shash, req->result); |
| 2269 | |
| 2270 | /* Done with hash, can deallocate it now */ |
| 2271 | crypto_free_shash(ctx->shash->tfm); |
| 2272 | kfree(ctx->shash); |
| 2273 | |
| 2274 | } else { |
| 2275 | /* Otherwise call the internal function which uses SPU hw */ |
| 2276 | ret = __ahash_final(req); |
| 2277 | } |
| 2278 | |
| 2279 | return ret; |
| 2280 | } |
| 2281 | |
| 2282 | static int __ahash_finup(struct ahash_request *req) |
| 2283 | { |
| 2284 | struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| 2285 | |
| 2286 | flow_log("ahash_finup() nbytes:%u\n", req->nbytes); |
| 2287 | |
| 2288 | rctx->total_todo += req->nbytes; |
| 2289 | rctx->src_sent = 0; |
| 2290 | rctx->is_final = 1; |
| 2291 | |
| 2292 | return ahash_enqueue(req); |
| 2293 | } |
| 2294 | |
| 2295 | static int ahash_finup(struct ahash_request *req) |
| 2296 | { |
| 2297 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 2298 | struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| 2299 | u8 *tmpbuf; |
| 2300 | int ret; |
| 2301 | int nents; |
| 2302 | gfp_t gfp; |
| 2303 | |
| 2304 | if (spu_no_incr_hash(ctx)) { |
| 2305 | /* |
| 2306 | * If we get an incremental hashing request and it's not |
| 2307 | * supported by the hardware, we need to handle it in software |
| 2308 | * by calling synchronous hash functions. |
| 2309 | */ |
| 2310 | if (req->src) { |
| 2311 | nents = sg_nents(req->src); |
| 2312 | } else { |
| 2313 | ret = -EINVAL; |
| 2314 | goto ahash_finup_exit; |
| 2315 | } |
| 2316 | |
| 2317 | /* Copy data from req scatterlist to tmp buffer */ |
| 2318 | gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | |
| 2319 | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; |
| 2320 | tmpbuf = kmalloc(req->nbytes, gfp); |
| 2321 | if (!tmpbuf) { |
| 2322 | ret = -ENOMEM; |
| 2323 | goto ahash_finup_exit; |
| 2324 | } |
| 2325 | |
| 2326 | if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != |
| 2327 | req->nbytes) { |
| 2328 | ret = -EINVAL; |
| 2329 | goto ahash_finup_free; |
| 2330 | } |
| 2331 | |
| 2332 | /* Call synchronous update */ |
| 2333 | ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes, |
| 2334 | req->result); |
Rob Rice | 9d12ba8 | 2017-02-03 12:55:33 -0500 | [diff] [blame] | 2335 | } else { |
| 2336 | /* Otherwise call the internal function which uses SPU hw */ |
| 2337 | return __ahash_finup(req); |
| 2338 | } |
| 2339 | ahash_finup_free: |
| 2340 | kfree(tmpbuf); |
| 2341 | |
| 2342 | ahash_finup_exit: |
| 2343 | /* Done with hash, can deallocate it now */ |
| 2344 | crypto_free_shash(ctx->shash->tfm); |
| 2345 | kfree(ctx->shash); |
| 2346 | return ret; |
| 2347 | } |
| 2348 | |
| 2349 | static int ahash_digest(struct ahash_request *req) |
| 2350 | { |
| 2351 | int err = 0; |
| 2352 | |
| 2353 | flow_log("ahash_digest() nbytes:%u\n", req->nbytes); |
| 2354 | |
| 2355 | /* whole thing at once */ |
| 2356 | err = __ahash_init(req); |
| 2357 | if (!err) |
| 2358 | err = __ahash_finup(req); |
| 2359 | |
| 2360 | return err; |
| 2361 | } |
| 2362 | |
| 2363 | static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key, |
| 2364 | unsigned int keylen) |
| 2365 | { |
| 2366 | struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); |
| 2367 | |
| 2368 | flow_log("%s() ahash:%p key:%p keylen:%u\n", |
| 2369 | __func__, ahash, key, keylen); |
| 2370 | flow_dump(" key: ", key, keylen); |
| 2371 | |
| 2372 | if (ctx->auth.alg == HASH_ALG_AES) { |
| 2373 | switch (keylen) { |
| 2374 | case AES_KEYSIZE_128: |
| 2375 | ctx->cipher_type = CIPHER_TYPE_AES128; |
| 2376 | break; |
| 2377 | case AES_KEYSIZE_192: |
| 2378 | ctx->cipher_type = CIPHER_TYPE_AES192; |
| 2379 | break; |
| 2380 | case AES_KEYSIZE_256: |
| 2381 | ctx->cipher_type = CIPHER_TYPE_AES256; |
| 2382 | break; |
| 2383 | default: |
| 2384 | pr_err("%s() Error: Invalid key length\n", __func__); |
| 2385 | return -EINVAL; |
| 2386 | } |
| 2387 | } else { |
| 2388 | pr_err("%s() Error: unknown hash alg\n", __func__); |
| 2389 | return -EINVAL; |
| 2390 | } |
| 2391 | memcpy(ctx->authkey, key, keylen); |
| 2392 | ctx->authkeylen = keylen; |
| 2393 | |
| 2394 | return 0; |
| 2395 | } |
| 2396 | |
| 2397 | static int ahash_export(struct ahash_request *req, void *out) |
| 2398 | { |
| 2399 | const struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| 2400 | struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out; |
| 2401 | |
| 2402 | spu_exp->total_todo = rctx->total_todo; |
| 2403 | spu_exp->total_sent = rctx->total_sent; |
| 2404 | spu_exp->is_sw_hmac = rctx->is_sw_hmac; |
| 2405 | memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry)); |
| 2406 | spu_exp->hash_carry_len = rctx->hash_carry_len; |
| 2407 | memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash)); |
| 2408 | |
| 2409 | return 0; |
| 2410 | } |
| 2411 | |
| 2412 | static int ahash_import(struct ahash_request *req, const void *in) |
| 2413 | { |
| 2414 | struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| 2415 | struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in; |
| 2416 | |
| 2417 | rctx->total_todo = spu_exp->total_todo; |
| 2418 | rctx->total_sent = spu_exp->total_sent; |
| 2419 | rctx->is_sw_hmac = spu_exp->is_sw_hmac; |
| 2420 | memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry)); |
| 2421 | rctx->hash_carry_len = spu_exp->hash_carry_len; |
| 2422 | memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash)); |
| 2423 | |
| 2424 | return 0; |
| 2425 | } |
| 2426 | |
| 2427 | static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key, |
| 2428 | unsigned int keylen) |
| 2429 | { |
| 2430 | struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); |
| 2431 | unsigned int blocksize = |
| 2432 | crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); |
| 2433 | unsigned int digestsize = crypto_ahash_digestsize(ahash); |
| 2434 | unsigned int index; |
| 2435 | int rc; |
| 2436 | |
| 2437 | flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n", |
| 2438 | __func__, ahash, key, keylen, blocksize, digestsize); |
| 2439 | flow_dump(" key: ", key, keylen); |
| 2440 | |
| 2441 | if (keylen > blocksize) { |
| 2442 | switch (ctx->auth.alg) { |
| 2443 | case HASH_ALG_MD5: |
| 2444 | rc = do_shash("md5", ctx->authkey, key, keylen, NULL, |
| 2445 | 0, NULL, 0); |
| 2446 | break; |
| 2447 | case HASH_ALG_SHA1: |
| 2448 | rc = do_shash("sha1", ctx->authkey, key, keylen, NULL, |
| 2449 | 0, NULL, 0); |
| 2450 | break; |
| 2451 | case HASH_ALG_SHA224: |
| 2452 | rc = do_shash("sha224", ctx->authkey, key, keylen, NULL, |
| 2453 | 0, NULL, 0); |
| 2454 | break; |
| 2455 | case HASH_ALG_SHA256: |
| 2456 | rc = do_shash("sha256", ctx->authkey, key, keylen, NULL, |
| 2457 | 0, NULL, 0); |
| 2458 | break; |
| 2459 | case HASH_ALG_SHA384: |
| 2460 | rc = do_shash("sha384", ctx->authkey, key, keylen, NULL, |
| 2461 | 0, NULL, 0); |
| 2462 | break; |
| 2463 | case HASH_ALG_SHA512: |
| 2464 | rc = do_shash("sha512", ctx->authkey, key, keylen, NULL, |
| 2465 | 0, NULL, 0); |
| 2466 | break; |
| 2467 | case HASH_ALG_SHA3_224: |
| 2468 | rc = do_shash("sha3-224", ctx->authkey, key, keylen, |
| 2469 | NULL, 0, NULL, 0); |
| 2470 | break; |
| 2471 | case HASH_ALG_SHA3_256: |
| 2472 | rc = do_shash("sha3-256", ctx->authkey, key, keylen, |
| 2473 | NULL, 0, NULL, 0); |
| 2474 | break; |
| 2475 | case HASH_ALG_SHA3_384: |
| 2476 | rc = do_shash("sha3-384", ctx->authkey, key, keylen, |
| 2477 | NULL, 0, NULL, 0); |
| 2478 | break; |
| 2479 | case HASH_ALG_SHA3_512: |
| 2480 | rc = do_shash("sha3-512", ctx->authkey, key, keylen, |
| 2481 | NULL, 0, NULL, 0); |
| 2482 | break; |
| 2483 | default: |
| 2484 | pr_err("%s() Error: unknown hash alg\n", __func__); |
| 2485 | return -EINVAL; |
| 2486 | } |
| 2487 | if (rc < 0) { |
| 2488 | pr_err("%s() Error %d computing shash for %s\n", |
| 2489 | __func__, rc, hash_alg_name[ctx->auth.alg]); |
| 2490 | return rc; |
| 2491 | } |
| 2492 | ctx->authkeylen = digestsize; |
| 2493 | |
| 2494 | flow_log(" keylen > digestsize... hashed\n"); |
| 2495 | flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen); |
| 2496 | } else { |
| 2497 | memcpy(ctx->authkey, key, keylen); |
| 2498 | ctx->authkeylen = keylen; |
| 2499 | } |
| 2500 | |
| 2501 | /* |
| 2502 | * Full HMAC operation in SPUM is not verified, |
| 2503 | * So keeping the generation of IPAD, OPAD and |
| 2504 | * outer hashing in software. |
| 2505 | */ |
| 2506 | if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) { |
| 2507 | memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen); |
| 2508 | memset(ctx->ipad + ctx->authkeylen, 0, |
| 2509 | blocksize - ctx->authkeylen); |
| 2510 | ctx->authkeylen = 0; |
| 2511 | memcpy(ctx->opad, ctx->ipad, blocksize); |
| 2512 | |
| 2513 | for (index = 0; index < blocksize; index++) { |
Corentin LABBE | 1126d47 | 2017-05-19 08:53:24 +0200 | [diff] [blame] | 2514 | ctx->ipad[index] ^= HMAC_IPAD_VALUE; |
| 2515 | ctx->opad[index] ^= HMAC_OPAD_VALUE; |
Rob Rice | 9d12ba8 | 2017-02-03 12:55:33 -0500 | [diff] [blame] | 2516 | } |
| 2517 | |
| 2518 | flow_dump(" ipad: ", ctx->ipad, blocksize); |
| 2519 | flow_dump(" opad: ", ctx->opad, blocksize); |
| 2520 | } |
| 2521 | ctx->digestsize = digestsize; |
| 2522 | atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]); |
| 2523 | |
| 2524 | return 0; |
| 2525 | } |
| 2526 | |
| 2527 | static int ahash_hmac_init(struct ahash_request *req) |
| 2528 | { |
| 2529 | struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| 2530 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 2531 | struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| 2532 | unsigned int blocksize = |
| 2533 | crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); |
| 2534 | |
| 2535 | flow_log("ahash_hmac_init()\n"); |
| 2536 | |
| 2537 | /* init the context as a hash */ |
| 2538 | ahash_init(req); |
| 2539 | |
| 2540 | if (!spu_no_incr_hash(ctx)) { |
| 2541 | /* SPU-M can do incr hashing but needs sw for outer HMAC */ |
| 2542 | rctx->is_sw_hmac = true; |
| 2543 | ctx->auth.mode = HASH_MODE_HASH; |
| 2544 | /* start with a prepended ipad */ |
| 2545 | memcpy(rctx->hash_carry, ctx->ipad, blocksize); |
| 2546 | rctx->hash_carry_len = blocksize; |
| 2547 | rctx->total_todo += blocksize; |
| 2548 | } |
| 2549 | |
| 2550 | return 0; |
| 2551 | } |
| 2552 | |
| 2553 | static int ahash_hmac_update(struct ahash_request *req) |
| 2554 | { |
| 2555 | flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes); |
| 2556 | |
| 2557 | if (!req->nbytes) |
| 2558 | return 0; |
| 2559 | |
| 2560 | return ahash_update(req); |
| 2561 | } |
| 2562 | |
| 2563 | static int ahash_hmac_final(struct ahash_request *req) |
| 2564 | { |
| 2565 | flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes); |
| 2566 | |
| 2567 | return ahash_final(req); |
| 2568 | } |
| 2569 | |
| 2570 | static int ahash_hmac_finup(struct ahash_request *req) |
| 2571 | { |
| 2572 | flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes); |
| 2573 | |
| 2574 | return ahash_finup(req); |
| 2575 | } |
| 2576 | |
| 2577 | static int ahash_hmac_digest(struct ahash_request *req) |
| 2578 | { |
| 2579 | struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| 2580 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 2581 | struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| 2582 | unsigned int blocksize = |
| 2583 | crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); |
| 2584 | |
| 2585 | flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes); |
| 2586 | |
| 2587 | /* Perform initialization and then call finup */ |
| 2588 | __ahash_init(req); |
| 2589 | |
| 2590 | if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) { |
| 2591 | /* |
| 2592 | * SPU2 supports full HMAC implementation in the |
| 2593 | * hardware, need not to generate IPAD, OPAD and |
| 2594 | * outer hash in software. |
| 2595 | * Only for hash key len > hash block size, SPU2 |
| 2596 | * expects to perform hashing on the key, shorten |
| 2597 | * it to digest size and feed it as hash key. |
| 2598 | */ |
| 2599 | rctx->is_sw_hmac = false; |
| 2600 | ctx->auth.mode = HASH_MODE_HMAC; |
| 2601 | } else { |
| 2602 | rctx->is_sw_hmac = true; |
| 2603 | ctx->auth.mode = HASH_MODE_HASH; |
| 2604 | /* start with a prepended ipad */ |
| 2605 | memcpy(rctx->hash_carry, ctx->ipad, blocksize); |
| 2606 | rctx->hash_carry_len = blocksize; |
| 2607 | rctx->total_todo += blocksize; |
| 2608 | } |
| 2609 | |
| 2610 | return __ahash_finup(req); |
| 2611 | } |
| 2612 | |
| 2613 | /* aead helpers */ |
| 2614 | |
| 2615 | static int aead_need_fallback(struct aead_request *req) |
| 2616 | { |
| 2617 | struct iproc_reqctx_s *rctx = aead_request_ctx(req); |
| 2618 | struct spu_hw *spu = &iproc_priv.spu; |
| 2619 | struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| 2620 | struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); |
| 2621 | u32 payload_len; |
| 2622 | |
| 2623 | /* |
| 2624 | * SPU hardware cannot handle the AES-GCM/CCM case where plaintext |
| 2625 | * and AAD are both 0 bytes long. So use fallback in this case. |
| 2626 | */ |
| 2627 | if (((ctx->cipher.mode == CIPHER_MODE_GCM) || |
| 2628 | (ctx->cipher.mode == CIPHER_MODE_CCM)) && |
| 2629 | (req->assoclen == 0)) { |
| 2630 | if ((rctx->is_encrypt && (req->cryptlen == 0)) || |
| 2631 | (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) { |
| 2632 | flow_log("AES GCM/CCM needs fallback for 0 len req\n"); |
| 2633 | return 1; |
| 2634 | } |
| 2635 | } |
| 2636 | |
| 2637 | /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */ |
| 2638 | if ((ctx->cipher.mode == CIPHER_MODE_CCM) && |
| 2639 | (spu->spu_type == SPU_TYPE_SPUM) && |
| 2640 | (ctx->digestsize != 8) && (ctx->digestsize != 12) && |
| 2641 | (ctx->digestsize != 16)) { |
Colin Ian King | b1a4b18 | 2017-06-04 19:29:20 +0100 | [diff] [blame] | 2642 | flow_log("%s() AES CCM needs fallback for digest size %d\n", |
Rob Rice | 9d12ba8 | 2017-02-03 12:55:33 -0500 | [diff] [blame] | 2643 | __func__, ctx->digestsize); |
| 2644 | return 1; |
| 2645 | } |
| 2646 | |
| 2647 | /* |
| 2648 | * SPU-M on NSP has an issue where AES-CCM hash is not correct |
| 2649 | * when AAD size is 0 |
| 2650 | */ |
| 2651 | if ((ctx->cipher.mode == CIPHER_MODE_CCM) && |
| 2652 | (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) && |
| 2653 | (req->assoclen == 0)) { |
| 2654 | flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n", |
| 2655 | __func__); |
| 2656 | return 1; |
| 2657 | } |
| 2658 | |
| 2659 | payload_len = req->cryptlen; |
| 2660 | if (spu->spu_type == SPU_TYPE_SPUM) |
| 2661 | payload_len += req->assoclen; |
| 2662 | |
| 2663 | flow_log("%s() payload len: %u\n", __func__, payload_len); |
| 2664 | |
| 2665 | if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) |
| 2666 | return 0; |
| 2667 | else |
| 2668 | return payload_len > ctx->max_payload; |
| 2669 | } |
| 2670 | |
| 2671 | static void aead_complete(struct crypto_async_request *areq, int err) |
| 2672 | { |
| 2673 | struct aead_request *req = |
| 2674 | container_of(areq, struct aead_request, base); |
| 2675 | struct iproc_reqctx_s *rctx = aead_request_ctx(req); |
| 2676 | struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| 2677 | |
| 2678 | flow_log("%s() err:%d\n", __func__, err); |
| 2679 | |
| 2680 | areq->tfm = crypto_aead_tfm(aead); |
| 2681 | |
| 2682 | areq->complete = rctx->old_complete; |
| 2683 | areq->data = rctx->old_data; |
| 2684 | |
| 2685 | areq->complete(areq, err); |
| 2686 | } |
| 2687 | |
| 2688 | static int aead_do_fallback(struct aead_request *req, bool is_encrypt) |
| 2689 | { |
| 2690 | struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| 2691 | struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| 2692 | struct iproc_reqctx_s *rctx = aead_request_ctx(req); |
| 2693 | struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); |
| 2694 | int err; |
| 2695 | u32 req_flags; |
| 2696 | |
| 2697 | flow_log("%s() enc:%u\n", __func__, is_encrypt); |
| 2698 | |
| 2699 | if (ctx->fallback_cipher) { |
| 2700 | /* Store the cipher tfm and then use the fallback tfm */ |
| 2701 | rctx->old_tfm = tfm; |
| 2702 | aead_request_set_tfm(req, ctx->fallback_cipher); |
| 2703 | /* |
| 2704 | * Save the callback and chain ourselves in, so we can restore |
| 2705 | * the tfm |
| 2706 | */ |
| 2707 | rctx->old_complete = req->base.complete; |
| 2708 | rctx->old_data = req->base.data; |
| 2709 | req_flags = aead_request_flags(req); |
| 2710 | aead_request_set_callback(req, req_flags, aead_complete, req); |
| 2711 | err = is_encrypt ? crypto_aead_encrypt(req) : |
| 2712 | crypto_aead_decrypt(req); |
| 2713 | |
| 2714 | if (err == 0) { |
| 2715 | /* |
| 2716 | * fallback was synchronous (did not return |
| 2717 | * -EINPROGRESS). So restore request state here. |
| 2718 | */ |
| 2719 | aead_request_set_callback(req, req_flags, |
| 2720 | rctx->old_complete, req); |
| 2721 | req->base.data = rctx->old_data; |
| 2722 | aead_request_set_tfm(req, aead); |
| 2723 | flow_log("%s() fallback completed successfully\n\n", |
| 2724 | __func__); |
| 2725 | } |
| 2726 | } else { |
| 2727 | err = -EINVAL; |
| 2728 | } |
| 2729 | |
| 2730 | return err; |
| 2731 | } |
| 2732 | |
| 2733 | static int aead_enqueue(struct aead_request *req, bool is_encrypt) |
| 2734 | { |
| 2735 | struct iproc_reqctx_s *rctx = aead_request_ctx(req); |
| 2736 | struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| 2737 | struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); |
| 2738 | int err; |
| 2739 | |
| 2740 | flow_log("%s() enc:%u\n", __func__, is_encrypt); |
| 2741 | |
| 2742 | if (req->assoclen > MAX_ASSOC_SIZE) { |
| 2743 | pr_err |
| 2744 | ("%s() Error: associated data too long. (%u > %u bytes)\n", |
| 2745 | __func__, req->assoclen, MAX_ASSOC_SIZE); |
| 2746 | return -EINVAL; |
| 2747 | } |
| 2748 | |
| 2749 | rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | |
| 2750 | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; |
| 2751 | rctx->parent = &req->base; |
| 2752 | rctx->is_encrypt = is_encrypt; |
| 2753 | rctx->bd_suppress = false; |
| 2754 | rctx->total_todo = req->cryptlen; |
| 2755 | rctx->src_sent = 0; |
| 2756 | rctx->total_sent = 0; |
| 2757 | rctx->total_received = 0; |
| 2758 | rctx->is_sw_hmac = false; |
| 2759 | rctx->ctx = ctx; |
| 2760 | memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); |
| 2761 | |
| 2762 | /* assoc data is at start of src sg */ |
| 2763 | rctx->assoc = req->src; |
| 2764 | |
| 2765 | /* |
| 2766 | * Init current position in src scatterlist to be after assoc data. |
| 2767 | * src_skip set to buffer offset where data begins. (Assoc data could |
| 2768 | * end in the middle of a buffer.) |
| 2769 | */ |
| 2770 | if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg, |
| 2771 | &rctx->src_skip) < 0) { |
| 2772 | pr_err("%s() Error: Unable to find start of src data\n", |
| 2773 | __func__); |
| 2774 | return -EINVAL; |
| 2775 | } |
| 2776 | |
| 2777 | rctx->src_nents = 0; |
| 2778 | rctx->dst_nents = 0; |
| 2779 | if (req->dst == req->src) { |
| 2780 | rctx->dst_sg = rctx->src_sg; |
| 2781 | rctx->dst_skip = rctx->src_skip; |
| 2782 | } else { |
| 2783 | /* |
| 2784 | * Expect req->dst to have room for assoc data followed by |
| 2785 | * output data and ICV, if encrypt. So initialize dst_sg |
| 2786 | * to point beyond assoc len offset. |
| 2787 | */ |
| 2788 | if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg, |
| 2789 | &rctx->dst_skip) < 0) { |
| 2790 | pr_err("%s() Error: Unable to find start of dst data\n", |
| 2791 | __func__); |
| 2792 | return -EINVAL; |
| 2793 | } |
| 2794 | } |
| 2795 | |
| 2796 | if (ctx->cipher.mode == CIPHER_MODE_CBC || |
| 2797 | ctx->cipher.mode == CIPHER_MODE_CTR || |
| 2798 | ctx->cipher.mode == CIPHER_MODE_OFB || |
| 2799 | ctx->cipher.mode == CIPHER_MODE_XTS || |
| 2800 | ctx->cipher.mode == CIPHER_MODE_GCM) { |
| 2801 | rctx->iv_ctr_len = |
| 2802 | ctx->salt_len + |
| 2803 | crypto_aead_ivsize(crypto_aead_reqtfm(req)); |
| 2804 | } else if (ctx->cipher.mode == CIPHER_MODE_CCM) { |
| 2805 | rctx->iv_ctr_len = CCM_AES_IV_SIZE; |
| 2806 | } else { |
| 2807 | rctx->iv_ctr_len = 0; |
| 2808 | } |
| 2809 | |
| 2810 | rctx->hash_carry_len = 0; |
| 2811 | |
| 2812 | flow_log(" src sg: %p\n", req->src); |
| 2813 | flow_log(" rctx->src_sg: %p, src_skip %u\n", |
| 2814 | rctx->src_sg, rctx->src_skip); |
| 2815 | flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen); |
| 2816 | flow_log(" dst sg: %p\n", req->dst); |
| 2817 | flow_log(" rctx->dst_sg: %p, dst_skip %u\n", |
| 2818 | rctx->dst_sg, rctx->dst_skip); |
| 2819 | flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len); |
| 2820 | flow_dump(" iv: ", req->iv, rctx->iv_ctr_len); |
| 2821 | flow_log(" authkeylen:%u\n", ctx->authkeylen); |
| 2822 | flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no"); |
| 2823 | |
| 2824 | if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) |
| 2825 | flow_log(" max_payload infinite"); |
| 2826 | else |
| 2827 | flow_log(" max_payload: %u\n", ctx->max_payload); |
| 2828 | |
| 2829 | if (unlikely(aead_need_fallback(req))) |
| 2830 | return aead_do_fallback(req, is_encrypt); |
| 2831 | |
| 2832 | /* |
| 2833 | * Do memory allocations for request after fallback check, because if we |
| 2834 | * do fallback, we won't call finish_req() to dealloc. |
| 2835 | */ |
| 2836 | if (rctx->iv_ctr_len) { |
| 2837 | if (ctx->salt_len) |
| 2838 | memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset, |
| 2839 | ctx->salt, ctx->salt_len); |
| 2840 | memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len, |
| 2841 | req->iv, |
| 2842 | rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset); |
| 2843 | } |
| 2844 | |
| 2845 | rctx->chan_idx = select_channel(); |
| 2846 | err = handle_aead_req(rctx); |
| 2847 | if (err != -EINPROGRESS) |
| 2848 | /* synchronous result */ |
| 2849 | spu_chunk_cleanup(rctx); |
| 2850 | |
| 2851 | return err; |
| 2852 | } |
| 2853 | |
| 2854 | static int aead_authenc_setkey(struct crypto_aead *cipher, |
| 2855 | const u8 *key, unsigned int keylen) |
| 2856 | { |
| 2857 | struct spu_hw *spu = &iproc_priv.spu; |
| 2858 | struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); |
| 2859 | struct crypto_tfm *tfm = crypto_aead_tfm(cipher); |
| 2860 | struct rtattr *rta = (void *)key; |
| 2861 | struct crypto_authenc_key_param *param; |
| 2862 | const u8 *origkey = key; |
| 2863 | const unsigned int origkeylen = keylen; |
| 2864 | |
| 2865 | int ret = 0; |
| 2866 | |
| 2867 | flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key, |
| 2868 | keylen); |
| 2869 | flow_dump(" key: ", key, keylen); |
| 2870 | |
| 2871 | if (!RTA_OK(rta, keylen)) |
| 2872 | goto badkey; |
| 2873 | if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) |
| 2874 | goto badkey; |
| 2875 | if (RTA_PAYLOAD(rta) < sizeof(*param)) |
| 2876 | goto badkey; |
| 2877 | |
| 2878 | param = RTA_DATA(rta); |
| 2879 | ctx->enckeylen = be32_to_cpu(param->enckeylen); |
| 2880 | |
| 2881 | key += RTA_ALIGN(rta->rta_len); |
| 2882 | keylen -= RTA_ALIGN(rta->rta_len); |
| 2883 | |
| 2884 | if (keylen < ctx->enckeylen) |
| 2885 | goto badkey; |
| 2886 | if (ctx->enckeylen > MAX_KEY_SIZE) |
| 2887 | goto badkey; |
| 2888 | |
| 2889 | ctx->authkeylen = keylen - ctx->enckeylen; |
| 2890 | |
| 2891 | if (ctx->authkeylen > MAX_KEY_SIZE) |
| 2892 | goto badkey; |
| 2893 | |
| 2894 | memcpy(ctx->enckey, key + ctx->authkeylen, ctx->enckeylen); |
| 2895 | /* May end up padding auth key. So make sure it's zeroed. */ |
| 2896 | memset(ctx->authkey, 0, sizeof(ctx->authkey)); |
| 2897 | memcpy(ctx->authkey, key, ctx->authkeylen); |
| 2898 | |
| 2899 | switch (ctx->alg->cipher_info.alg) { |
| 2900 | case CIPHER_ALG_DES: |
| 2901 | if (ctx->enckeylen == DES_KEY_SIZE) { |
| 2902 | u32 tmp[DES_EXPKEY_WORDS]; |
| 2903 | u32 flags = CRYPTO_TFM_RES_WEAK_KEY; |
| 2904 | |
| 2905 | if (des_ekey(tmp, key) == 0) { |
| 2906 | if (crypto_aead_get_flags(cipher) & |
| 2907 | CRYPTO_TFM_REQ_WEAK_KEY) { |
| 2908 | crypto_aead_set_flags(cipher, flags); |
| 2909 | return -EINVAL; |
| 2910 | } |
| 2911 | } |
| 2912 | |
| 2913 | ctx->cipher_type = CIPHER_TYPE_DES; |
| 2914 | } else { |
| 2915 | goto badkey; |
| 2916 | } |
| 2917 | break; |
| 2918 | case CIPHER_ALG_3DES: |
| 2919 | if (ctx->enckeylen == (DES_KEY_SIZE * 3)) { |
| 2920 | const u32 *K = (const u32 *)key; |
| 2921 | u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED; |
| 2922 | |
| 2923 | if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) || |
| 2924 | !((K[2] ^ K[4]) | (K[3] ^ K[5]))) { |
| 2925 | crypto_aead_set_flags(cipher, flags); |
| 2926 | return -EINVAL; |
| 2927 | } |
| 2928 | |
| 2929 | ctx->cipher_type = CIPHER_TYPE_3DES; |
| 2930 | } else { |
| 2931 | crypto_aead_set_flags(cipher, |
| 2932 | CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 2933 | return -EINVAL; |
| 2934 | } |
| 2935 | break; |
| 2936 | case CIPHER_ALG_AES: |
| 2937 | switch (ctx->enckeylen) { |
| 2938 | case AES_KEYSIZE_128: |
| 2939 | ctx->cipher_type = CIPHER_TYPE_AES128; |
| 2940 | break; |
| 2941 | case AES_KEYSIZE_192: |
| 2942 | ctx->cipher_type = CIPHER_TYPE_AES192; |
| 2943 | break; |
| 2944 | case AES_KEYSIZE_256: |
| 2945 | ctx->cipher_type = CIPHER_TYPE_AES256; |
| 2946 | break; |
| 2947 | default: |
| 2948 | goto badkey; |
| 2949 | } |
| 2950 | break; |
| 2951 | case CIPHER_ALG_RC4: |
| 2952 | ctx->cipher_type = CIPHER_TYPE_INIT; |
| 2953 | break; |
| 2954 | default: |
| 2955 | pr_err("%s() Error: Unknown cipher alg\n", __func__); |
| 2956 | return -EINVAL; |
| 2957 | } |
| 2958 | |
| 2959 | flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, |
| 2960 | ctx->authkeylen); |
| 2961 | flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); |
| 2962 | flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); |
| 2963 | |
| 2964 | /* setkey the fallback just in case we needto use it */ |
| 2965 | if (ctx->fallback_cipher) { |
| 2966 | flow_log(" running fallback setkey()\n"); |
| 2967 | |
| 2968 | ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; |
| 2969 | ctx->fallback_cipher->base.crt_flags |= |
| 2970 | tfm->crt_flags & CRYPTO_TFM_REQ_MASK; |
| 2971 | ret = |
| 2972 | crypto_aead_setkey(ctx->fallback_cipher, origkey, |
| 2973 | origkeylen); |
| 2974 | if (ret) { |
| 2975 | flow_log(" fallback setkey() returned:%d\n", ret); |
| 2976 | tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; |
| 2977 | tfm->crt_flags |= |
| 2978 | (ctx->fallback_cipher->base.crt_flags & |
| 2979 | CRYPTO_TFM_RES_MASK); |
| 2980 | } |
| 2981 | } |
| 2982 | |
| 2983 | ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, |
| 2984 | ctx->enckeylen, |
| 2985 | false); |
| 2986 | |
| 2987 | atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); |
| 2988 | |
| 2989 | return ret; |
| 2990 | |
| 2991 | badkey: |
| 2992 | ctx->enckeylen = 0; |
| 2993 | ctx->authkeylen = 0; |
| 2994 | ctx->digestsize = 0; |
| 2995 | |
| 2996 | crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 2997 | return -EINVAL; |
| 2998 | } |
| 2999 | |
| 3000 | static int aead_gcm_ccm_setkey(struct crypto_aead *cipher, |
| 3001 | const u8 *key, unsigned int keylen) |
| 3002 | { |
| 3003 | struct spu_hw *spu = &iproc_priv.spu; |
| 3004 | struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); |
| 3005 | struct crypto_tfm *tfm = crypto_aead_tfm(cipher); |
| 3006 | |
| 3007 | int ret = 0; |
| 3008 | |
| 3009 | flow_log("%s() keylen:%u\n", __func__, keylen); |
| 3010 | flow_dump(" key: ", key, keylen); |
| 3011 | |
| 3012 | if (!ctx->is_esp) |
| 3013 | ctx->digestsize = keylen; |
| 3014 | |
| 3015 | ctx->enckeylen = keylen; |
| 3016 | ctx->authkeylen = 0; |
| 3017 | memcpy(ctx->enckey, key, ctx->enckeylen); |
| 3018 | |
| 3019 | switch (ctx->enckeylen) { |
| 3020 | case AES_KEYSIZE_128: |
| 3021 | ctx->cipher_type = CIPHER_TYPE_AES128; |
| 3022 | break; |
| 3023 | case AES_KEYSIZE_192: |
| 3024 | ctx->cipher_type = CIPHER_TYPE_AES192; |
| 3025 | break; |
| 3026 | case AES_KEYSIZE_256: |
| 3027 | ctx->cipher_type = CIPHER_TYPE_AES256; |
| 3028 | break; |
| 3029 | default: |
| 3030 | goto badkey; |
| 3031 | } |
| 3032 | |
| 3033 | flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, |
| 3034 | ctx->authkeylen); |
| 3035 | flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); |
| 3036 | flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); |
| 3037 | |
| 3038 | /* setkey the fallback just in case we need to use it */ |
| 3039 | if (ctx->fallback_cipher) { |
| 3040 | flow_log(" running fallback setkey()\n"); |
| 3041 | |
| 3042 | ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; |
| 3043 | ctx->fallback_cipher->base.crt_flags |= |
| 3044 | tfm->crt_flags & CRYPTO_TFM_REQ_MASK; |
| 3045 | ret = crypto_aead_setkey(ctx->fallback_cipher, key, |
| 3046 | keylen + ctx->salt_len); |
| 3047 | if (ret) { |
| 3048 | flow_log(" fallback setkey() returned:%d\n", ret); |
| 3049 | tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; |
| 3050 | tfm->crt_flags |= |
| 3051 | (ctx->fallback_cipher->base.crt_flags & |
| 3052 | CRYPTO_TFM_RES_MASK); |
| 3053 | } |
| 3054 | } |
| 3055 | |
| 3056 | ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, |
| 3057 | ctx->enckeylen, |
| 3058 | false); |
| 3059 | |
| 3060 | atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); |
| 3061 | |
| 3062 | flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, |
| 3063 | ctx->authkeylen); |
| 3064 | |
| 3065 | return ret; |
| 3066 | |
| 3067 | badkey: |
| 3068 | ctx->enckeylen = 0; |
| 3069 | ctx->authkeylen = 0; |
| 3070 | ctx->digestsize = 0; |
| 3071 | |
| 3072 | crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 3073 | return -EINVAL; |
| 3074 | } |
| 3075 | |
| 3076 | /** |
| 3077 | * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES. |
| 3078 | * @cipher: AEAD structure |
| 3079 | * @key: Key followed by 4 bytes of salt |
| 3080 | * @keylen: Length of key plus salt, in bytes |
| 3081 | * |
| 3082 | * Extracts salt from key and stores it to be prepended to IV on each request. |
| 3083 | * Digest is always 16 bytes |
| 3084 | * |
| 3085 | * Return: Value from generic gcm setkey. |
| 3086 | */ |
| 3087 | static int aead_gcm_esp_setkey(struct crypto_aead *cipher, |
| 3088 | const u8 *key, unsigned int keylen) |
| 3089 | { |
| 3090 | struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); |
| 3091 | |
| 3092 | flow_log("%s\n", __func__); |
| 3093 | ctx->salt_len = GCM_ESP_SALT_SIZE; |
| 3094 | ctx->salt_offset = GCM_ESP_SALT_OFFSET; |
| 3095 | memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); |
| 3096 | keylen -= GCM_ESP_SALT_SIZE; |
| 3097 | ctx->digestsize = GCM_ESP_DIGESTSIZE; |
| 3098 | ctx->is_esp = true; |
| 3099 | flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); |
| 3100 | |
| 3101 | return aead_gcm_ccm_setkey(cipher, key, keylen); |
| 3102 | } |
| 3103 | |
| 3104 | /** |
| 3105 | * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC. |
| 3106 | * cipher: AEAD structure |
| 3107 | * key: Key followed by 4 bytes of salt |
| 3108 | * keylen: Length of key plus salt, in bytes |
| 3109 | * |
| 3110 | * Extracts salt from key and stores it to be prepended to IV on each request. |
| 3111 | * Digest is always 16 bytes |
| 3112 | * |
| 3113 | * Return: Value from generic gcm setkey. |
| 3114 | */ |
| 3115 | static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher, |
| 3116 | const u8 *key, unsigned int keylen) |
| 3117 | { |
| 3118 | struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); |
| 3119 | |
| 3120 | flow_log("%s\n", __func__); |
| 3121 | ctx->salt_len = GCM_ESP_SALT_SIZE; |
| 3122 | ctx->salt_offset = GCM_ESP_SALT_OFFSET; |
| 3123 | memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); |
| 3124 | keylen -= GCM_ESP_SALT_SIZE; |
| 3125 | ctx->digestsize = GCM_ESP_DIGESTSIZE; |
| 3126 | ctx->is_esp = true; |
| 3127 | ctx->is_rfc4543 = true; |
| 3128 | flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); |
| 3129 | |
| 3130 | return aead_gcm_ccm_setkey(cipher, key, keylen); |
| 3131 | } |
| 3132 | |
| 3133 | /** |
| 3134 | * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES. |
| 3135 | * @cipher: AEAD structure |
| 3136 | * @key: Key followed by 4 bytes of salt |
| 3137 | * @keylen: Length of key plus salt, in bytes |
| 3138 | * |
| 3139 | * Extracts salt from key and stores it to be prepended to IV on each request. |
| 3140 | * Digest is always 16 bytes |
| 3141 | * |
| 3142 | * Return: Value from generic ccm setkey. |
| 3143 | */ |
| 3144 | static int aead_ccm_esp_setkey(struct crypto_aead *cipher, |
| 3145 | const u8 *key, unsigned int keylen) |
| 3146 | { |
| 3147 | struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); |
| 3148 | |
| 3149 | flow_log("%s\n", __func__); |
| 3150 | ctx->salt_len = CCM_ESP_SALT_SIZE; |
| 3151 | ctx->salt_offset = CCM_ESP_SALT_OFFSET; |
| 3152 | memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE); |
| 3153 | keylen -= CCM_ESP_SALT_SIZE; |
| 3154 | ctx->is_esp = true; |
| 3155 | flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE); |
| 3156 | |
| 3157 | return aead_gcm_ccm_setkey(cipher, key, keylen); |
| 3158 | } |
| 3159 | |
| 3160 | static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize) |
| 3161 | { |
| 3162 | struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); |
| 3163 | int ret = 0; |
| 3164 | |
| 3165 | flow_log("%s() authkeylen:%u authsize:%u\n", |
| 3166 | __func__, ctx->authkeylen, authsize); |
| 3167 | |
| 3168 | ctx->digestsize = authsize; |
| 3169 | |
| 3170 | /* setkey the fallback just in case we needto use it */ |
| 3171 | if (ctx->fallback_cipher) { |
| 3172 | flow_log(" running fallback setauth()\n"); |
| 3173 | |
| 3174 | ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize); |
| 3175 | if (ret) |
| 3176 | flow_log(" fallback setauth() returned:%d\n", ret); |
| 3177 | } |
| 3178 | |
| 3179 | return ret; |
| 3180 | } |
| 3181 | |
| 3182 | static int aead_encrypt(struct aead_request *req) |
| 3183 | { |
| 3184 | flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen, |
| 3185 | req->cryptlen); |
| 3186 | dump_sg(req->src, 0, req->cryptlen + req->assoclen); |
| 3187 | flow_log(" assoc_len:%u\n", req->assoclen); |
| 3188 | |
| 3189 | return aead_enqueue(req, true); |
| 3190 | } |
| 3191 | |
| 3192 | static int aead_decrypt(struct aead_request *req) |
| 3193 | { |
| 3194 | flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen); |
| 3195 | dump_sg(req->src, 0, req->cryptlen + req->assoclen); |
| 3196 | flow_log(" assoc_len:%u\n", req->assoclen); |
| 3197 | |
| 3198 | return aead_enqueue(req, false); |
| 3199 | } |
| 3200 | |
| 3201 | /* ==================== Supported Cipher Algorithms ==================== */ |
| 3202 | |
| 3203 | static struct iproc_alg_s driver_algs[] = { |
| 3204 | { |
| 3205 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3206 | .alg.aead = { |
| 3207 | .base = { |
| 3208 | .cra_name = "gcm(aes)", |
| 3209 | .cra_driver_name = "gcm-aes-iproc", |
| 3210 | .cra_blocksize = AES_BLOCK_SIZE, |
| 3211 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
| 3212 | }, |
| 3213 | .setkey = aead_gcm_ccm_setkey, |
| 3214 | .ivsize = GCM_AES_IV_SIZE, |
| 3215 | .maxauthsize = AES_BLOCK_SIZE, |
| 3216 | }, |
| 3217 | .cipher_info = { |
| 3218 | .alg = CIPHER_ALG_AES, |
| 3219 | .mode = CIPHER_MODE_GCM, |
| 3220 | }, |
| 3221 | .auth_info = { |
| 3222 | .alg = HASH_ALG_AES, |
| 3223 | .mode = HASH_MODE_GCM, |
| 3224 | }, |
| 3225 | .auth_first = 0, |
| 3226 | }, |
| 3227 | { |
| 3228 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3229 | .alg.aead = { |
| 3230 | .base = { |
| 3231 | .cra_name = "ccm(aes)", |
| 3232 | .cra_driver_name = "ccm-aes-iproc", |
| 3233 | .cra_blocksize = AES_BLOCK_SIZE, |
| 3234 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
| 3235 | }, |
| 3236 | .setkey = aead_gcm_ccm_setkey, |
| 3237 | .ivsize = CCM_AES_IV_SIZE, |
| 3238 | .maxauthsize = AES_BLOCK_SIZE, |
| 3239 | }, |
| 3240 | .cipher_info = { |
| 3241 | .alg = CIPHER_ALG_AES, |
| 3242 | .mode = CIPHER_MODE_CCM, |
| 3243 | }, |
| 3244 | .auth_info = { |
| 3245 | .alg = HASH_ALG_AES, |
| 3246 | .mode = HASH_MODE_CCM, |
| 3247 | }, |
| 3248 | .auth_first = 0, |
| 3249 | }, |
| 3250 | { |
| 3251 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3252 | .alg.aead = { |
| 3253 | .base = { |
| 3254 | .cra_name = "rfc4106(gcm(aes))", |
| 3255 | .cra_driver_name = "gcm-aes-esp-iproc", |
| 3256 | .cra_blocksize = AES_BLOCK_SIZE, |
| 3257 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
| 3258 | }, |
| 3259 | .setkey = aead_gcm_esp_setkey, |
| 3260 | .ivsize = GCM_ESP_IV_SIZE, |
| 3261 | .maxauthsize = AES_BLOCK_SIZE, |
| 3262 | }, |
| 3263 | .cipher_info = { |
| 3264 | .alg = CIPHER_ALG_AES, |
| 3265 | .mode = CIPHER_MODE_GCM, |
| 3266 | }, |
| 3267 | .auth_info = { |
| 3268 | .alg = HASH_ALG_AES, |
| 3269 | .mode = HASH_MODE_GCM, |
| 3270 | }, |
| 3271 | .auth_first = 0, |
| 3272 | }, |
| 3273 | { |
| 3274 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3275 | .alg.aead = { |
| 3276 | .base = { |
| 3277 | .cra_name = "rfc4309(ccm(aes))", |
| 3278 | .cra_driver_name = "ccm-aes-esp-iproc", |
| 3279 | .cra_blocksize = AES_BLOCK_SIZE, |
| 3280 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
| 3281 | }, |
| 3282 | .setkey = aead_ccm_esp_setkey, |
| 3283 | .ivsize = CCM_AES_IV_SIZE, |
| 3284 | .maxauthsize = AES_BLOCK_SIZE, |
| 3285 | }, |
| 3286 | .cipher_info = { |
| 3287 | .alg = CIPHER_ALG_AES, |
| 3288 | .mode = CIPHER_MODE_CCM, |
| 3289 | }, |
| 3290 | .auth_info = { |
| 3291 | .alg = HASH_ALG_AES, |
| 3292 | .mode = HASH_MODE_CCM, |
| 3293 | }, |
| 3294 | .auth_first = 0, |
| 3295 | }, |
| 3296 | { |
| 3297 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3298 | .alg.aead = { |
| 3299 | .base = { |
| 3300 | .cra_name = "rfc4543(gcm(aes))", |
| 3301 | .cra_driver_name = "gmac-aes-esp-iproc", |
| 3302 | .cra_blocksize = AES_BLOCK_SIZE, |
| 3303 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
| 3304 | }, |
| 3305 | .setkey = rfc4543_gcm_esp_setkey, |
| 3306 | .ivsize = GCM_ESP_IV_SIZE, |
| 3307 | .maxauthsize = AES_BLOCK_SIZE, |
| 3308 | }, |
| 3309 | .cipher_info = { |
| 3310 | .alg = CIPHER_ALG_AES, |
| 3311 | .mode = CIPHER_MODE_GCM, |
| 3312 | }, |
| 3313 | .auth_info = { |
| 3314 | .alg = HASH_ALG_AES, |
| 3315 | .mode = HASH_MODE_GCM, |
| 3316 | }, |
| 3317 | .auth_first = 0, |
| 3318 | }, |
| 3319 | { |
| 3320 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3321 | .alg.aead = { |
| 3322 | .base = { |
| 3323 | .cra_name = "authenc(hmac(md5),cbc(aes))", |
| 3324 | .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc", |
| 3325 | .cra_blocksize = AES_BLOCK_SIZE, |
| 3326 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3327 | }, |
| 3328 | .setkey = aead_authenc_setkey, |
| 3329 | .ivsize = AES_BLOCK_SIZE, |
| 3330 | .maxauthsize = MD5_DIGEST_SIZE, |
| 3331 | }, |
| 3332 | .cipher_info = { |
| 3333 | .alg = CIPHER_ALG_AES, |
| 3334 | .mode = CIPHER_MODE_CBC, |
| 3335 | }, |
| 3336 | .auth_info = { |
| 3337 | .alg = HASH_ALG_MD5, |
| 3338 | .mode = HASH_MODE_HMAC, |
| 3339 | }, |
| 3340 | .auth_first = 0, |
| 3341 | }, |
| 3342 | { |
| 3343 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3344 | .alg.aead = { |
| 3345 | .base = { |
| 3346 | .cra_name = "authenc(hmac(sha1),cbc(aes))", |
| 3347 | .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc", |
| 3348 | .cra_blocksize = AES_BLOCK_SIZE, |
| 3349 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3350 | }, |
| 3351 | .setkey = aead_authenc_setkey, |
| 3352 | .ivsize = AES_BLOCK_SIZE, |
| 3353 | .maxauthsize = SHA1_DIGEST_SIZE, |
| 3354 | }, |
| 3355 | .cipher_info = { |
| 3356 | .alg = CIPHER_ALG_AES, |
| 3357 | .mode = CIPHER_MODE_CBC, |
| 3358 | }, |
| 3359 | .auth_info = { |
| 3360 | .alg = HASH_ALG_SHA1, |
| 3361 | .mode = HASH_MODE_HMAC, |
| 3362 | }, |
| 3363 | .auth_first = 0, |
| 3364 | }, |
| 3365 | { |
| 3366 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3367 | .alg.aead = { |
| 3368 | .base = { |
| 3369 | .cra_name = "authenc(hmac(sha256),cbc(aes))", |
| 3370 | .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc", |
| 3371 | .cra_blocksize = AES_BLOCK_SIZE, |
| 3372 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3373 | }, |
| 3374 | .setkey = aead_authenc_setkey, |
| 3375 | .ivsize = AES_BLOCK_SIZE, |
| 3376 | .maxauthsize = SHA256_DIGEST_SIZE, |
| 3377 | }, |
| 3378 | .cipher_info = { |
| 3379 | .alg = CIPHER_ALG_AES, |
| 3380 | .mode = CIPHER_MODE_CBC, |
| 3381 | }, |
| 3382 | .auth_info = { |
| 3383 | .alg = HASH_ALG_SHA256, |
| 3384 | .mode = HASH_MODE_HMAC, |
| 3385 | }, |
| 3386 | .auth_first = 0, |
| 3387 | }, |
| 3388 | { |
| 3389 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3390 | .alg.aead = { |
| 3391 | .base = { |
| 3392 | .cra_name = "authenc(hmac(md5),cbc(des))", |
| 3393 | .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc", |
| 3394 | .cra_blocksize = DES_BLOCK_SIZE, |
| 3395 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3396 | }, |
| 3397 | .setkey = aead_authenc_setkey, |
| 3398 | .ivsize = DES_BLOCK_SIZE, |
| 3399 | .maxauthsize = MD5_DIGEST_SIZE, |
| 3400 | }, |
| 3401 | .cipher_info = { |
| 3402 | .alg = CIPHER_ALG_DES, |
| 3403 | .mode = CIPHER_MODE_CBC, |
| 3404 | }, |
| 3405 | .auth_info = { |
| 3406 | .alg = HASH_ALG_MD5, |
| 3407 | .mode = HASH_MODE_HMAC, |
| 3408 | }, |
| 3409 | .auth_first = 0, |
| 3410 | }, |
| 3411 | { |
| 3412 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3413 | .alg.aead = { |
| 3414 | .base = { |
| 3415 | .cra_name = "authenc(hmac(sha1),cbc(des))", |
| 3416 | .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc", |
| 3417 | .cra_blocksize = DES_BLOCK_SIZE, |
| 3418 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3419 | }, |
| 3420 | .setkey = aead_authenc_setkey, |
| 3421 | .ivsize = DES_BLOCK_SIZE, |
| 3422 | .maxauthsize = SHA1_DIGEST_SIZE, |
| 3423 | }, |
| 3424 | .cipher_info = { |
| 3425 | .alg = CIPHER_ALG_DES, |
| 3426 | .mode = CIPHER_MODE_CBC, |
| 3427 | }, |
| 3428 | .auth_info = { |
| 3429 | .alg = HASH_ALG_SHA1, |
| 3430 | .mode = HASH_MODE_HMAC, |
| 3431 | }, |
| 3432 | .auth_first = 0, |
| 3433 | }, |
| 3434 | { |
| 3435 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3436 | .alg.aead = { |
| 3437 | .base = { |
| 3438 | .cra_name = "authenc(hmac(sha224),cbc(des))", |
| 3439 | .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc", |
| 3440 | .cra_blocksize = DES_BLOCK_SIZE, |
| 3441 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3442 | }, |
| 3443 | .setkey = aead_authenc_setkey, |
| 3444 | .ivsize = DES_BLOCK_SIZE, |
| 3445 | .maxauthsize = SHA224_DIGEST_SIZE, |
| 3446 | }, |
| 3447 | .cipher_info = { |
| 3448 | .alg = CIPHER_ALG_DES, |
| 3449 | .mode = CIPHER_MODE_CBC, |
| 3450 | }, |
| 3451 | .auth_info = { |
| 3452 | .alg = HASH_ALG_SHA224, |
| 3453 | .mode = HASH_MODE_HMAC, |
| 3454 | }, |
| 3455 | .auth_first = 0, |
| 3456 | }, |
| 3457 | { |
| 3458 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3459 | .alg.aead = { |
| 3460 | .base = { |
| 3461 | .cra_name = "authenc(hmac(sha256),cbc(des))", |
| 3462 | .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc", |
| 3463 | .cra_blocksize = DES_BLOCK_SIZE, |
| 3464 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3465 | }, |
| 3466 | .setkey = aead_authenc_setkey, |
| 3467 | .ivsize = DES_BLOCK_SIZE, |
| 3468 | .maxauthsize = SHA256_DIGEST_SIZE, |
| 3469 | }, |
| 3470 | .cipher_info = { |
| 3471 | .alg = CIPHER_ALG_DES, |
| 3472 | .mode = CIPHER_MODE_CBC, |
| 3473 | }, |
| 3474 | .auth_info = { |
| 3475 | .alg = HASH_ALG_SHA256, |
| 3476 | .mode = HASH_MODE_HMAC, |
| 3477 | }, |
| 3478 | .auth_first = 0, |
| 3479 | }, |
| 3480 | { |
| 3481 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3482 | .alg.aead = { |
| 3483 | .base = { |
| 3484 | .cra_name = "authenc(hmac(sha384),cbc(des))", |
| 3485 | .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc", |
| 3486 | .cra_blocksize = DES_BLOCK_SIZE, |
| 3487 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3488 | }, |
| 3489 | .setkey = aead_authenc_setkey, |
| 3490 | .ivsize = DES_BLOCK_SIZE, |
| 3491 | .maxauthsize = SHA384_DIGEST_SIZE, |
| 3492 | }, |
| 3493 | .cipher_info = { |
| 3494 | .alg = CIPHER_ALG_DES, |
| 3495 | .mode = CIPHER_MODE_CBC, |
| 3496 | }, |
| 3497 | .auth_info = { |
| 3498 | .alg = HASH_ALG_SHA384, |
| 3499 | .mode = HASH_MODE_HMAC, |
| 3500 | }, |
| 3501 | .auth_first = 0, |
| 3502 | }, |
| 3503 | { |
| 3504 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3505 | .alg.aead = { |
| 3506 | .base = { |
| 3507 | .cra_name = "authenc(hmac(sha512),cbc(des))", |
| 3508 | .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc", |
| 3509 | .cra_blocksize = DES_BLOCK_SIZE, |
| 3510 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3511 | }, |
| 3512 | .setkey = aead_authenc_setkey, |
| 3513 | .ivsize = DES_BLOCK_SIZE, |
| 3514 | .maxauthsize = SHA512_DIGEST_SIZE, |
| 3515 | }, |
| 3516 | .cipher_info = { |
| 3517 | .alg = CIPHER_ALG_DES, |
| 3518 | .mode = CIPHER_MODE_CBC, |
| 3519 | }, |
| 3520 | .auth_info = { |
| 3521 | .alg = HASH_ALG_SHA512, |
| 3522 | .mode = HASH_MODE_HMAC, |
| 3523 | }, |
| 3524 | .auth_first = 0, |
| 3525 | }, |
| 3526 | { |
| 3527 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3528 | .alg.aead = { |
| 3529 | .base = { |
| 3530 | .cra_name = "authenc(hmac(md5),cbc(des3_ede))", |
| 3531 | .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc", |
| 3532 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 3533 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3534 | }, |
| 3535 | .setkey = aead_authenc_setkey, |
| 3536 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 3537 | .maxauthsize = MD5_DIGEST_SIZE, |
| 3538 | }, |
| 3539 | .cipher_info = { |
| 3540 | .alg = CIPHER_ALG_3DES, |
| 3541 | .mode = CIPHER_MODE_CBC, |
| 3542 | }, |
| 3543 | .auth_info = { |
| 3544 | .alg = HASH_ALG_MD5, |
| 3545 | .mode = HASH_MODE_HMAC, |
| 3546 | }, |
| 3547 | .auth_first = 0, |
| 3548 | }, |
| 3549 | { |
| 3550 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3551 | .alg.aead = { |
| 3552 | .base = { |
| 3553 | .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", |
| 3554 | .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc", |
| 3555 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 3556 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3557 | }, |
| 3558 | .setkey = aead_authenc_setkey, |
| 3559 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 3560 | .maxauthsize = SHA1_DIGEST_SIZE, |
| 3561 | }, |
| 3562 | .cipher_info = { |
| 3563 | .alg = CIPHER_ALG_3DES, |
| 3564 | .mode = CIPHER_MODE_CBC, |
| 3565 | }, |
| 3566 | .auth_info = { |
| 3567 | .alg = HASH_ALG_SHA1, |
| 3568 | .mode = HASH_MODE_HMAC, |
| 3569 | }, |
| 3570 | .auth_first = 0, |
| 3571 | }, |
| 3572 | { |
| 3573 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3574 | .alg.aead = { |
| 3575 | .base = { |
| 3576 | .cra_name = "authenc(hmac(sha224),cbc(des3_ede))", |
| 3577 | .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc", |
| 3578 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 3579 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3580 | }, |
| 3581 | .setkey = aead_authenc_setkey, |
| 3582 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 3583 | .maxauthsize = SHA224_DIGEST_SIZE, |
| 3584 | }, |
| 3585 | .cipher_info = { |
| 3586 | .alg = CIPHER_ALG_3DES, |
| 3587 | .mode = CIPHER_MODE_CBC, |
| 3588 | }, |
| 3589 | .auth_info = { |
| 3590 | .alg = HASH_ALG_SHA224, |
| 3591 | .mode = HASH_MODE_HMAC, |
| 3592 | }, |
| 3593 | .auth_first = 0, |
| 3594 | }, |
| 3595 | { |
| 3596 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3597 | .alg.aead = { |
| 3598 | .base = { |
| 3599 | .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", |
| 3600 | .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc", |
| 3601 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 3602 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3603 | }, |
| 3604 | .setkey = aead_authenc_setkey, |
| 3605 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 3606 | .maxauthsize = SHA256_DIGEST_SIZE, |
| 3607 | }, |
| 3608 | .cipher_info = { |
| 3609 | .alg = CIPHER_ALG_3DES, |
| 3610 | .mode = CIPHER_MODE_CBC, |
| 3611 | }, |
| 3612 | .auth_info = { |
| 3613 | .alg = HASH_ALG_SHA256, |
| 3614 | .mode = HASH_MODE_HMAC, |
| 3615 | }, |
| 3616 | .auth_first = 0, |
| 3617 | }, |
| 3618 | { |
| 3619 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3620 | .alg.aead = { |
| 3621 | .base = { |
| 3622 | .cra_name = "authenc(hmac(sha384),cbc(des3_ede))", |
| 3623 | .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc", |
| 3624 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 3625 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3626 | }, |
| 3627 | .setkey = aead_authenc_setkey, |
| 3628 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 3629 | .maxauthsize = SHA384_DIGEST_SIZE, |
| 3630 | }, |
| 3631 | .cipher_info = { |
| 3632 | .alg = CIPHER_ALG_3DES, |
| 3633 | .mode = CIPHER_MODE_CBC, |
| 3634 | }, |
| 3635 | .auth_info = { |
| 3636 | .alg = HASH_ALG_SHA384, |
| 3637 | .mode = HASH_MODE_HMAC, |
| 3638 | }, |
| 3639 | .auth_first = 0, |
| 3640 | }, |
| 3641 | { |
| 3642 | .type = CRYPTO_ALG_TYPE_AEAD, |
| 3643 | .alg.aead = { |
| 3644 | .base = { |
| 3645 | .cra_name = "authenc(hmac(sha512),cbc(des3_ede))", |
| 3646 | .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc", |
| 3647 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 3648 | .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| 3649 | }, |
| 3650 | .setkey = aead_authenc_setkey, |
| 3651 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 3652 | .maxauthsize = SHA512_DIGEST_SIZE, |
| 3653 | }, |
| 3654 | .cipher_info = { |
| 3655 | .alg = CIPHER_ALG_3DES, |
| 3656 | .mode = CIPHER_MODE_CBC, |
| 3657 | }, |
| 3658 | .auth_info = { |
| 3659 | .alg = HASH_ALG_SHA512, |
| 3660 | .mode = HASH_MODE_HMAC, |
| 3661 | }, |
| 3662 | .auth_first = 0, |
| 3663 | }, |
| 3664 | |
| 3665 | /* ABLKCIPHER algorithms. */ |
| 3666 | { |
| 3667 | .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| 3668 | .alg.crypto = { |
| 3669 | .cra_name = "ecb(arc4)", |
| 3670 | .cra_driver_name = "ecb-arc4-iproc", |
| 3671 | .cra_blocksize = ARC4_BLOCK_SIZE, |
| 3672 | .cra_ablkcipher = { |
| 3673 | .min_keysize = ARC4_MIN_KEY_SIZE, |
| 3674 | .max_keysize = ARC4_MAX_KEY_SIZE, |
| 3675 | .ivsize = 0, |
| 3676 | } |
| 3677 | }, |
| 3678 | .cipher_info = { |
| 3679 | .alg = CIPHER_ALG_RC4, |
| 3680 | .mode = CIPHER_MODE_NONE, |
| 3681 | }, |
| 3682 | .auth_info = { |
| 3683 | .alg = HASH_ALG_NONE, |
| 3684 | .mode = HASH_MODE_NONE, |
| 3685 | }, |
| 3686 | }, |
| 3687 | { |
| 3688 | .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| 3689 | .alg.crypto = { |
| 3690 | .cra_name = "ofb(des)", |
| 3691 | .cra_driver_name = "ofb-des-iproc", |
| 3692 | .cra_blocksize = DES_BLOCK_SIZE, |
| 3693 | .cra_ablkcipher = { |
| 3694 | .min_keysize = DES_KEY_SIZE, |
| 3695 | .max_keysize = DES_KEY_SIZE, |
| 3696 | .ivsize = DES_BLOCK_SIZE, |
| 3697 | } |
| 3698 | }, |
| 3699 | .cipher_info = { |
| 3700 | .alg = CIPHER_ALG_DES, |
| 3701 | .mode = CIPHER_MODE_OFB, |
| 3702 | }, |
| 3703 | .auth_info = { |
| 3704 | .alg = HASH_ALG_NONE, |
| 3705 | .mode = HASH_MODE_NONE, |
| 3706 | }, |
| 3707 | }, |
| 3708 | { |
| 3709 | .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| 3710 | .alg.crypto = { |
| 3711 | .cra_name = "cbc(des)", |
| 3712 | .cra_driver_name = "cbc-des-iproc", |
| 3713 | .cra_blocksize = DES_BLOCK_SIZE, |
| 3714 | .cra_ablkcipher = { |
| 3715 | .min_keysize = DES_KEY_SIZE, |
| 3716 | .max_keysize = DES_KEY_SIZE, |
| 3717 | .ivsize = DES_BLOCK_SIZE, |
| 3718 | } |
| 3719 | }, |
| 3720 | .cipher_info = { |
| 3721 | .alg = CIPHER_ALG_DES, |
| 3722 | .mode = CIPHER_MODE_CBC, |
| 3723 | }, |
| 3724 | .auth_info = { |
| 3725 | .alg = HASH_ALG_NONE, |
| 3726 | .mode = HASH_MODE_NONE, |
| 3727 | }, |
| 3728 | }, |
| 3729 | { |
| 3730 | .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| 3731 | .alg.crypto = { |
| 3732 | .cra_name = "ecb(des)", |
| 3733 | .cra_driver_name = "ecb-des-iproc", |
| 3734 | .cra_blocksize = DES_BLOCK_SIZE, |
| 3735 | .cra_ablkcipher = { |
| 3736 | .min_keysize = DES_KEY_SIZE, |
| 3737 | .max_keysize = DES_KEY_SIZE, |
| 3738 | .ivsize = 0, |
| 3739 | } |
| 3740 | }, |
| 3741 | .cipher_info = { |
| 3742 | .alg = CIPHER_ALG_DES, |
| 3743 | .mode = CIPHER_MODE_ECB, |
| 3744 | }, |
| 3745 | .auth_info = { |
| 3746 | .alg = HASH_ALG_NONE, |
| 3747 | .mode = HASH_MODE_NONE, |
| 3748 | }, |
| 3749 | }, |
| 3750 | { |
| 3751 | .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| 3752 | .alg.crypto = { |
| 3753 | .cra_name = "ofb(des3_ede)", |
| 3754 | .cra_driver_name = "ofb-des3-iproc", |
| 3755 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 3756 | .cra_ablkcipher = { |
| 3757 | .min_keysize = DES3_EDE_KEY_SIZE, |
| 3758 | .max_keysize = DES3_EDE_KEY_SIZE, |
| 3759 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 3760 | } |
| 3761 | }, |
| 3762 | .cipher_info = { |
| 3763 | .alg = CIPHER_ALG_3DES, |
| 3764 | .mode = CIPHER_MODE_OFB, |
| 3765 | }, |
| 3766 | .auth_info = { |
| 3767 | .alg = HASH_ALG_NONE, |
| 3768 | .mode = HASH_MODE_NONE, |
| 3769 | }, |
| 3770 | }, |
| 3771 | { |
| 3772 | .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| 3773 | .alg.crypto = { |
| 3774 | .cra_name = "cbc(des3_ede)", |
| 3775 | .cra_driver_name = "cbc-des3-iproc", |
| 3776 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 3777 | .cra_ablkcipher = { |
| 3778 | .min_keysize = DES3_EDE_KEY_SIZE, |
| 3779 | .max_keysize = DES3_EDE_KEY_SIZE, |
| 3780 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 3781 | } |
| 3782 | }, |
| 3783 | .cipher_info = { |
| 3784 | .alg = CIPHER_ALG_3DES, |
| 3785 | .mode = CIPHER_MODE_CBC, |
| 3786 | }, |
| 3787 | .auth_info = { |
| 3788 | .alg = HASH_ALG_NONE, |
| 3789 | .mode = HASH_MODE_NONE, |
| 3790 | }, |
| 3791 | }, |
| 3792 | { |
| 3793 | .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| 3794 | .alg.crypto = { |
| 3795 | .cra_name = "ecb(des3_ede)", |
| 3796 | .cra_driver_name = "ecb-des3-iproc", |
| 3797 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 3798 | .cra_ablkcipher = { |
| 3799 | .min_keysize = DES3_EDE_KEY_SIZE, |
| 3800 | .max_keysize = DES3_EDE_KEY_SIZE, |
| 3801 | .ivsize = 0, |
| 3802 | } |
| 3803 | }, |
| 3804 | .cipher_info = { |
| 3805 | .alg = CIPHER_ALG_3DES, |
| 3806 | .mode = CIPHER_MODE_ECB, |
| 3807 | }, |
| 3808 | .auth_info = { |
| 3809 | .alg = HASH_ALG_NONE, |
| 3810 | .mode = HASH_MODE_NONE, |
| 3811 | }, |
| 3812 | }, |
| 3813 | { |
| 3814 | .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| 3815 | .alg.crypto = { |
| 3816 | .cra_name = "ofb(aes)", |
| 3817 | .cra_driver_name = "ofb-aes-iproc", |
| 3818 | .cra_blocksize = AES_BLOCK_SIZE, |
| 3819 | .cra_ablkcipher = { |
| 3820 | .min_keysize = AES_MIN_KEY_SIZE, |
| 3821 | .max_keysize = AES_MAX_KEY_SIZE, |
| 3822 | .ivsize = AES_BLOCK_SIZE, |
| 3823 | } |
| 3824 | }, |
| 3825 | .cipher_info = { |
| 3826 | .alg = CIPHER_ALG_AES, |
| 3827 | .mode = CIPHER_MODE_OFB, |
| 3828 | }, |
| 3829 | .auth_info = { |
| 3830 | .alg = HASH_ALG_NONE, |
| 3831 | .mode = HASH_MODE_NONE, |
| 3832 | }, |
| 3833 | }, |
| 3834 | { |
| 3835 | .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| 3836 | .alg.crypto = { |
| 3837 | .cra_name = "cbc(aes)", |
| 3838 | .cra_driver_name = "cbc-aes-iproc", |
| 3839 | .cra_blocksize = AES_BLOCK_SIZE, |
| 3840 | .cra_ablkcipher = { |
| 3841 | .min_keysize = AES_MIN_KEY_SIZE, |
| 3842 | .max_keysize = AES_MAX_KEY_SIZE, |
| 3843 | .ivsize = AES_BLOCK_SIZE, |
| 3844 | } |
| 3845 | }, |
| 3846 | .cipher_info = { |
| 3847 | .alg = CIPHER_ALG_AES, |
| 3848 | .mode = CIPHER_MODE_CBC, |
| 3849 | }, |
| 3850 | .auth_info = { |
| 3851 | .alg = HASH_ALG_NONE, |
| 3852 | .mode = HASH_MODE_NONE, |
| 3853 | }, |
| 3854 | }, |
| 3855 | { |
| 3856 | .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| 3857 | .alg.crypto = { |
| 3858 | .cra_name = "ecb(aes)", |
| 3859 | .cra_driver_name = "ecb-aes-iproc", |
| 3860 | .cra_blocksize = AES_BLOCK_SIZE, |
| 3861 | .cra_ablkcipher = { |
| 3862 | .min_keysize = AES_MIN_KEY_SIZE, |
| 3863 | .max_keysize = AES_MAX_KEY_SIZE, |
| 3864 | .ivsize = 0, |
| 3865 | } |
| 3866 | }, |
| 3867 | .cipher_info = { |
| 3868 | .alg = CIPHER_ALG_AES, |
| 3869 | .mode = CIPHER_MODE_ECB, |
| 3870 | }, |
| 3871 | .auth_info = { |
| 3872 | .alg = HASH_ALG_NONE, |
| 3873 | .mode = HASH_MODE_NONE, |
| 3874 | }, |
| 3875 | }, |
| 3876 | { |
| 3877 | .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| 3878 | .alg.crypto = { |
| 3879 | .cra_name = "ctr(aes)", |
| 3880 | .cra_driver_name = "ctr-aes-iproc", |
| 3881 | .cra_blocksize = AES_BLOCK_SIZE, |
| 3882 | .cra_ablkcipher = { |
| 3883 | /* .geniv = "chainiv", */ |
| 3884 | .min_keysize = AES_MIN_KEY_SIZE, |
| 3885 | .max_keysize = AES_MAX_KEY_SIZE, |
| 3886 | .ivsize = AES_BLOCK_SIZE, |
| 3887 | } |
| 3888 | }, |
| 3889 | .cipher_info = { |
| 3890 | .alg = CIPHER_ALG_AES, |
| 3891 | .mode = CIPHER_MODE_CTR, |
| 3892 | }, |
| 3893 | .auth_info = { |
| 3894 | .alg = HASH_ALG_NONE, |
| 3895 | .mode = HASH_MODE_NONE, |
| 3896 | }, |
| 3897 | }, |
| 3898 | { |
| 3899 | .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| 3900 | .alg.crypto = { |
| 3901 | .cra_name = "xts(aes)", |
| 3902 | .cra_driver_name = "xts-aes-iproc", |
| 3903 | .cra_blocksize = AES_BLOCK_SIZE, |
| 3904 | .cra_ablkcipher = { |
| 3905 | .min_keysize = 2 * AES_MIN_KEY_SIZE, |
| 3906 | .max_keysize = 2 * AES_MAX_KEY_SIZE, |
| 3907 | .ivsize = AES_BLOCK_SIZE, |
| 3908 | } |
| 3909 | }, |
| 3910 | .cipher_info = { |
| 3911 | .alg = CIPHER_ALG_AES, |
| 3912 | .mode = CIPHER_MODE_XTS, |
| 3913 | }, |
| 3914 | .auth_info = { |
| 3915 | .alg = HASH_ALG_NONE, |
| 3916 | .mode = HASH_MODE_NONE, |
| 3917 | }, |
| 3918 | }, |
| 3919 | |
| 3920 | /* AHASH algorithms. */ |
| 3921 | { |
| 3922 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 3923 | .alg.hash = { |
| 3924 | .halg.digestsize = MD5_DIGEST_SIZE, |
| 3925 | .halg.base = { |
| 3926 | .cra_name = "md5", |
| 3927 | .cra_driver_name = "md5-iproc", |
| 3928 | .cra_blocksize = MD5_BLOCK_WORDS * 4, |
| 3929 | .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
| 3930 | CRYPTO_ALG_ASYNC, |
| 3931 | } |
| 3932 | }, |
| 3933 | .cipher_info = { |
| 3934 | .alg = CIPHER_ALG_NONE, |
| 3935 | .mode = CIPHER_MODE_NONE, |
| 3936 | }, |
| 3937 | .auth_info = { |
| 3938 | .alg = HASH_ALG_MD5, |
| 3939 | .mode = HASH_MODE_HASH, |
| 3940 | }, |
| 3941 | }, |
| 3942 | { |
| 3943 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 3944 | .alg.hash = { |
| 3945 | .halg.digestsize = MD5_DIGEST_SIZE, |
| 3946 | .halg.base = { |
| 3947 | .cra_name = "hmac(md5)", |
| 3948 | .cra_driver_name = "hmac-md5-iproc", |
| 3949 | .cra_blocksize = MD5_BLOCK_WORDS * 4, |
| 3950 | } |
| 3951 | }, |
| 3952 | .cipher_info = { |
| 3953 | .alg = CIPHER_ALG_NONE, |
| 3954 | .mode = CIPHER_MODE_NONE, |
| 3955 | }, |
| 3956 | .auth_info = { |
| 3957 | .alg = HASH_ALG_MD5, |
| 3958 | .mode = HASH_MODE_HMAC, |
| 3959 | }, |
| 3960 | }, |
| 3961 | {.type = CRYPTO_ALG_TYPE_AHASH, |
| 3962 | .alg.hash = { |
| 3963 | .halg.digestsize = SHA1_DIGEST_SIZE, |
| 3964 | .halg.base = { |
| 3965 | .cra_name = "sha1", |
| 3966 | .cra_driver_name = "sha1-iproc", |
| 3967 | .cra_blocksize = SHA1_BLOCK_SIZE, |
| 3968 | } |
| 3969 | }, |
| 3970 | .cipher_info = { |
| 3971 | .alg = CIPHER_ALG_NONE, |
| 3972 | .mode = CIPHER_MODE_NONE, |
| 3973 | }, |
| 3974 | .auth_info = { |
| 3975 | .alg = HASH_ALG_SHA1, |
| 3976 | .mode = HASH_MODE_HASH, |
| 3977 | }, |
| 3978 | }, |
| 3979 | {.type = CRYPTO_ALG_TYPE_AHASH, |
| 3980 | .alg.hash = { |
| 3981 | .halg.digestsize = SHA1_DIGEST_SIZE, |
| 3982 | .halg.base = { |
| 3983 | .cra_name = "hmac(sha1)", |
| 3984 | .cra_driver_name = "hmac-sha1-iproc", |
| 3985 | .cra_blocksize = SHA1_BLOCK_SIZE, |
| 3986 | } |
| 3987 | }, |
| 3988 | .cipher_info = { |
| 3989 | .alg = CIPHER_ALG_NONE, |
| 3990 | .mode = CIPHER_MODE_NONE, |
| 3991 | }, |
| 3992 | .auth_info = { |
| 3993 | .alg = HASH_ALG_SHA1, |
| 3994 | .mode = HASH_MODE_HMAC, |
| 3995 | }, |
| 3996 | }, |
| 3997 | {.type = CRYPTO_ALG_TYPE_AHASH, |
| 3998 | .alg.hash = { |
| 3999 | .halg.digestsize = SHA224_DIGEST_SIZE, |
| 4000 | .halg.base = { |
| 4001 | .cra_name = "sha224", |
| 4002 | .cra_driver_name = "sha224-iproc", |
| 4003 | .cra_blocksize = SHA224_BLOCK_SIZE, |
| 4004 | } |
| 4005 | }, |
| 4006 | .cipher_info = { |
| 4007 | .alg = CIPHER_ALG_NONE, |
| 4008 | .mode = CIPHER_MODE_NONE, |
| 4009 | }, |
| 4010 | .auth_info = { |
| 4011 | .alg = HASH_ALG_SHA224, |
| 4012 | .mode = HASH_MODE_HASH, |
| 4013 | }, |
| 4014 | }, |
| 4015 | {.type = CRYPTO_ALG_TYPE_AHASH, |
| 4016 | .alg.hash = { |
| 4017 | .halg.digestsize = SHA224_DIGEST_SIZE, |
| 4018 | .halg.base = { |
| 4019 | .cra_name = "hmac(sha224)", |
| 4020 | .cra_driver_name = "hmac-sha224-iproc", |
| 4021 | .cra_blocksize = SHA224_BLOCK_SIZE, |
| 4022 | } |
| 4023 | }, |
| 4024 | .cipher_info = { |
| 4025 | .alg = CIPHER_ALG_NONE, |
| 4026 | .mode = CIPHER_MODE_NONE, |
| 4027 | }, |
| 4028 | .auth_info = { |
| 4029 | .alg = HASH_ALG_SHA224, |
| 4030 | .mode = HASH_MODE_HMAC, |
| 4031 | }, |
| 4032 | }, |
| 4033 | {.type = CRYPTO_ALG_TYPE_AHASH, |
| 4034 | .alg.hash = { |
| 4035 | .halg.digestsize = SHA256_DIGEST_SIZE, |
| 4036 | .halg.base = { |
| 4037 | .cra_name = "sha256", |
| 4038 | .cra_driver_name = "sha256-iproc", |
| 4039 | .cra_blocksize = SHA256_BLOCK_SIZE, |
| 4040 | } |
| 4041 | }, |
| 4042 | .cipher_info = { |
| 4043 | .alg = CIPHER_ALG_NONE, |
| 4044 | .mode = CIPHER_MODE_NONE, |
| 4045 | }, |
| 4046 | .auth_info = { |
| 4047 | .alg = HASH_ALG_SHA256, |
| 4048 | .mode = HASH_MODE_HASH, |
| 4049 | }, |
| 4050 | }, |
| 4051 | {.type = CRYPTO_ALG_TYPE_AHASH, |
| 4052 | .alg.hash = { |
| 4053 | .halg.digestsize = SHA256_DIGEST_SIZE, |
| 4054 | .halg.base = { |
| 4055 | .cra_name = "hmac(sha256)", |
| 4056 | .cra_driver_name = "hmac-sha256-iproc", |
| 4057 | .cra_blocksize = SHA256_BLOCK_SIZE, |
| 4058 | } |
| 4059 | }, |
| 4060 | .cipher_info = { |
| 4061 | .alg = CIPHER_ALG_NONE, |
| 4062 | .mode = CIPHER_MODE_NONE, |
| 4063 | }, |
| 4064 | .auth_info = { |
| 4065 | .alg = HASH_ALG_SHA256, |
| 4066 | .mode = HASH_MODE_HMAC, |
| 4067 | }, |
| 4068 | }, |
| 4069 | { |
| 4070 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4071 | .alg.hash = { |
| 4072 | .halg.digestsize = SHA384_DIGEST_SIZE, |
| 4073 | .halg.base = { |
| 4074 | .cra_name = "sha384", |
| 4075 | .cra_driver_name = "sha384-iproc", |
| 4076 | .cra_blocksize = SHA384_BLOCK_SIZE, |
| 4077 | } |
| 4078 | }, |
| 4079 | .cipher_info = { |
| 4080 | .alg = CIPHER_ALG_NONE, |
| 4081 | .mode = CIPHER_MODE_NONE, |
| 4082 | }, |
| 4083 | .auth_info = { |
| 4084 | .alg = HASH_ALG_SHA384, |
| 4085 | .mode = HASH_MODE_HASH, |
| 4086 | }, |
| 4087 | }, |
| 4088 | { |
| 4089 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4090 | .alg.hash = { |
| 4091 | .halg.digestsize = SHA384_DIGEST_SIZE, |
| 4092 | .halg.base = { |
| 4093 | .cra_name = "hmac(sha384)", |
| 4094 | .cra_driver_name = "hmac-sha384-iproc", |
| 4095 | .cra_blocksize = SHA384_BLOCK_SIZE, |
| 4096 | } |
| 4097 | }, |
| 4098 | .cipher_info = { |
| 4099 | .alg = CIPHER_ALG_NONE, |
| 4100 | .mode = CIPHER_MODE_NONE, |
| 4101 | }, |
| 4102 | .auth_info = { |
| 4103 | .alg = HASH_ALG_SHA384, |
| 4104 | .mode = HASH_MODE_HMAC, |
| 4105 | }, |
| 4106 | }, |
| 4107 | { |
| 4108 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4109 | .alg.hash = { |
| 4110 | .halg.digestsize = SHA512_DIGEST_SIZE, |
| 4111 | .halg.base = { |
| 4112 | .cra_name = "sha512", |
| 4113 | .cra_driver_name = "sha512-iproc", |
| 4114 | .cra_blocksize = SHA512_BLOCK_SIZE, |
| 4115 | } |
| 4116 | }, |
| 4117 | .cipher_info = { |
| 4118 | .alg = CIPHER_ALG_NONE, |
| 4119 | .mode = CIPHER_MODE_NONE, |
| 4120 | }, |
| 4121 | .auth_info = { |
| 4122 | .alg = HASH_ALG_SHA512, |
| 4123 | .mode = HASH_MODE_HASH, |
| 4124 | }, |
| 4125 | }, |
| 4126 | { |
| 4127 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4128 | .alg.hash = { |
| 4129 | .halg.digestsize = SHA512_DIGEST_SIZE, |
| 4130 | .halg.base = { |
| 4131 | .cra_name = "hmac(sha512)", |
| 4132 | .cra_driver_name = "hmac-sha512-iproc", |
| 4133 | .cra_blocksize = SHA512_BLOCK_SIZE, |
| 4134 | } |
| 4135 | }, |
| 4136 | .cipher_info = { |
| 4137 | .alg = CIPHER_ALG_NONE, |
| 4138 | .mode = CIPHER_MODE_NONE, |
| 4139 | }, |
| 4140 | .auth_info = { |
| 4141 | .alg = HASH_ALG_SHA512, |
| 4142 | .mode = HASH_MODE_HMAC, |
| 4143 | }, |
| 4144 | }, |
| 4145 | { |
| 4146 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4147 | .alg.hash = { |
| 4148 | .halg.digestsize = SHA3_224_DIGEST_SIZE, |
| 4149 | .halg.base = { |
| 4150 | .cra_name = "sha3-224", |
| 4151 | .cra_driver_name = "sha3-224-iproc", |
| 4152 | .cra_blocksize = SHA3_224_BLOCK_SIZE, |
| 4153 | } |
| 4154 | }, |
| 4155 | .cipher_info = { |
| 4156 | .alg = CIPHER_ALG_NONE, |
| 4157 | .mode = CIPHER_MODE_NONE, |
| 4158 | }, |
| 4159 | .auth_info = { |
| 4160 | .alg = HASH_ALG_SHA3_224, |
| 4161 | .mode = HASH_MODE_HASH, |
| 4162 | }, |
| 4163 | }, |
| 4164 | { |
| 4165 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4166 | .alg.hash = { |
| 4167 | .halg.digestsize = SHA3_224_DIGEST_SIZE, |
| 4168 | .halg.base = { |
| 4169 | .cra_name = "hmac(sha3-224)", |
| 4170 | .cra_driver_name = "hmac-sha3-224-iproc", |
| 4171 | .cra_blocksize = SHA3_224_BLOCK_SIZE, |
| 4172 | } |
| 4173 | }, |
| 4174 | .cipher_info = { |
| 4175 | .alg = CIPHER_ALG_NONE, |
| 4176 | .mode = CIPHER_MODE_NONE, |
| 4177 | }, |
| 4178 | .auth_info = { |
| 4179 | .alg = HASH_ALG_SHA3_224, |
| 4180 | .mode = HASH_MODE_HMAC |
| 4181 | }, |
| 4182 | }, |
| 4183 | { |
| 4184 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4185 | .alg.hash = { |
| 4186 | .halg.digestsize = SHA3_256_DIGEST_SIZE, |
| 4187 | .halg.base = { |
| 4188 | .cra_name = "sha3-256", |
| 4189 | .cra_driver_name = "sha3-256-iproc", |
| 4190 | .cra_blocksize = SHA3_256_BLOCK_SIZE, |
| 4191 | } |
| 4192 | }, |
| 4193 | .cipher_info = { |
| 4194 | .alg = CIPHER_ALG_NONE, |
| 4195 | .mode = CIPHER_MODE_NONE, |
| 4196 | }, |
| 4197 | .auth_info = { |
| 4198 | .alg = HASH_ALG_SHA3_256, |
| 4199 | .mode = HASH_MODE_HASH, |
| 4200 | }, |
| 4201 | }, |
| 4202 | { |
| 4203 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4204 | .alg.hash = { |
| 4205 | .halg.digestsize = SHA3_256_DIGEST_SIZE, |
| 4206 | .halg.base = { |
| 4207 | .cra_name = "hmac(sha3-256)", |
| 4208 | .cra_driver_name = "hmac-sha3-256-iproc", |
| 4209 | .cra_blocksize = SHA3_256_BLOCK_SIZE, |
| 4210 | } |
| 4211 | }, |
| 4212 | .cipher_info = { |
| 4213 | .alg = CIPHER_ALG_NONE, |
| 4214 | .mode = CIPHER_MODE_NONE, |
| 4215 | }, |
| 4216 | .auth_info = { |
| 4217 | .alg = HASH_ALG_SHA3_256, |
| 4218 | .mode = HASH_MODE_HMAC, |
| 4219 | }, |
| 4220 | }, |
| 4221 | { |
| 4222 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4223 | .alg.hash = { |
| 4224 | .halg.digestsize = SHA3_384_DIGEST_SIZE, |
| 4225 | .halg.base = { |
| 4226 | .cra_name = "sha3-384", |
| 4227 | .cra_driver_name = "sha3-384-iproc", |
| 4228 | .cra_blocksize = SHA3_224_BLOCK_SIZE, |
| 4229 | } |
| 4230 | }, |
| 4231 | .cipher_info = { |
| 4232 | .alg = CIPHER_ALG_NONE, |
| 4233 | .mode = CIPHER_MODE_NONE, |
| 4234 | }, |
| 4235 | .auth_info = { |
| 4236 | .alg = HASH_ALG_SHA3_384, |
| 4237 | .mode = HASH_MODE_HASH, |
| 4238 | }, |
| 4239 | }, |
| 4240 | { |
| 4241 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4242 | .alg.hash = { |
| 4243 | .halg.digestsize = SHA3_384_DIGEST_SIZE, |
| 4244 | .halg.base = { |
| 4245 | .cra_name = "hmac(sha3-384)", |
| 4246 | .cra_driver_name = "hmac-sha3-384-iproc", |
| 4247 | .cra_blocksize = SHA3_384_BLOCK_SIZE, |
| 4248 | } |
| 4249 | }, |
| 4250 | .cipher_info = { |
| 4251 | .alg = CIPHER_ALG_NONE, |
| 4252 | .mode = CIPHER_MODE_NONE, |
| 4253 | }, |
| 4254 | .auth_info = { |
| 4255 | .alg = HASH_ALG_SHA3_384, |
| 4256 | .mode = HASH_MODE_HMAC, |
| 4257 | }, |
| 4258 | }, |
| 4259 | { |
| 4260 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4261 | .alg.hash = { |
| 4262 | .halg.digestsize = SHA3_512_DIGEST_SIZE, |
| 4263 | .halg.base = { |
| 4264 | .cra_name = "sha3-512", |
| 4265 | .cra_driver_name = "sha3-512-iproc", |
| 4266 | .cra_blocksize = SHA3_512_BLOCK_SIZE, |
| 4267 | } |
| 4268 | }, |
| 4269 | .cipher_info = { |
| 4270 | .alg = CIPHER_ALG_NONE, |
| 4271 | .mode = CIPHER_MODE_NONE, |
| 4272 | }, |
| 4273 | .auth_info = { |
| 4274 | .alg = HASH_ALG_SHA3_512, |
| 4275 | .mode = HASH_MODE_HASH, |
| 4276 | }, |
| 4277 | }, |
| 4278 | { |
| 4279 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4280 | .alg.hash = { |
| 4281 | .halg.digestsize = SHA3_512_DIGEST_SIZE, |
| 4282 | .halg.base = { |
| 4283 | .cra_name = "hmac(sha3-512)", |
| 4284 | .cra_driver_name = "hmac-sha3-512-iproc", |
| 4285 | .cra_blocksize = SHA3_512_BLOCK_SIZE, |
| 4286 | } |
| 4287 | }, |
| 4288 | .cipher_info = { |
| 4289 | .alg = CIPHER_ALG_NONE, |
| 4290 | .mode = CIPHER_MODE_NONE, |
| 4291 | }, |
| 4292 | .auth_info = { |
| 4293 | .alg = HASH_ALG_SHA3_512, |
| 4294 | .mode = HASH_MODE_HMAC, |
| 4295 | }, |
| 4296 | }, |
| 4297 | { |
| 4298 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4299 | .alg.hash = { |
| 4300 | .halg.digestsize = AES_BLOCK_SIZE, |
| 4301 | .halg.base = { |
| 4302 | .cra_name = "xcbc(aes)", |
| 4303 | .cra_driver_name = "xcbc-aes-iproc", |
| 4304 | .cra_blocksize = AES_BLOCK_SIZE, |
| 4305 | } |
| 4306 | }, |
| 4307 | .cipher_info = { |
| 4308 | .alg = CIPHER_ALG_NONE, |
| 4309 | .mode = CIPHER_MODE_NONE, |
| 4310 | }, |
| 4311 | .auth_info = { |
| 4312 | .alg = HASH_ALG_AES, |
| 4313 | .mode = HASH_MODE_XCBC, |
| 4314 | }, |
| 4315 | }, |
| 4316 | { |
| 4317 | .type = CRYPTO_ALG_TYPE_AHASH, |
| 4318 | .alg.hash = { |
| 4319 | .halg.digestsize = AES_BLOCK_SIZE, |
| 4320 | .halg.base = { |
| 4321 | .cra_name = "cmac(aes)", |
| 4322 | .cra_driver_name = "cmac-aes-iproc", |
| 4323 | .cra_blocksize = AES_BLOCK_SIZE, |
| 4324 | } |
| 4325 | }, |
| 4326 | .cipher_info = { |
| 4327 | .alg = CIPHER_ALG_NONE, |
| 4328 | .mode = CIPHER_MODE_NONE, |
| 4329 | }, |
| 4330 | .auth_info = { |
| 4331 | .alg = HASH_ALG_AES, |
| 4332 | .mode = HASH_MODE_CMAC, |
| 4333 | }, |
| 4334 | }, |
| 4335 | }; |
| 4336 | |
| 4337 | static int generic_cra_init(struct crypto_tfm *tfm, |
| 4338 | struct iproc_alg_s *cipher_alg) |
| 4339 | { |
| 4340 | struct spu_hw *spu = &iproc_priv.spu; |
| 4341 | struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); |
| 4342 | unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); |
| 4343 | |
| 4344 | flow_log("%s()\n", __func__); |
| 4345 | |
| 4346 | ctx->alg = cipher_alg; |
| 4347 | ctx->cipher = cipher_alg->cipher_info; |
| 4348 | ctx->auth = cipher_alg->auth_info; |
| 4349 | ctx->auth_first = cipher_alg->auth_first; |
| 4350 | ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg, |
| 4351 | ctx->cipher.mode, |
| 4352 | blocksize); |
| 4353 | ctx->fallback_cipher = NULL; |
| 4354 | |
| 4355 | ctx->enckeylen = 0; |
| 4356 | ctx->authkeylen = 0; |
| 4357 | |
| 4358 | atomic_inc(&iproc_priv.stream_count); |
| 4359 | atomic_inc(&iproc_priv.session_count); |
| 4360 | |
| 4361 | return 0; |
| 4362 | } |
| 4363 | |
| 4364 | static int ablkcipher_cra_init(struct crypto_tfm *tfm) |
| 4365 | { |
| 4366 | struct crypto_alg *alg = tfm->__crt_alg; |
| 4367 | struct iproc_alg_s *cipher_alg; |
| 4368 | |
| 4369 | flow_log("%s()\n", __func__); |
| 4370 | |
| 4371 | tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s); |
| 4372 | |
| 4373 | cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto); |
| 4374 | return generic_cra_init(tfm, cipher_alg); |
| 4375 | } |
| 4376 | |
| 4377 | static int ahash_cra_init(struct crypto_tfm *tfm) |
| 4378 | { |
| 4379 | int err; |
| 4380 | struct crypto_alg *alg = tfm->__crt_alg; |
| 4381 | struct iproc_alg_s *cipher_alg; |
| 4382 | |
| 4383 | cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s, |
| 4384 | alg.hash); |
| 4385 | |
| 4386 | err = generic_cra_init(tfm, cipher_alg); |
| 4387 | flow_log("%s()\n", __func__); |
| 4388 | |
| 4389 | /* |
| 4390 | * export state size has to be < 512 bytes. So don't include msg bufs |
| 4391 | * in state size. |
| 4392 | */ |
| 4393 | crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), |
| 4394 | sizeof(struct iproc_reqctx_s)); |
| 4395 | |
| 4396 | return err; |
| 4397 | } |
| 4398 | |
| 4399 | static int aead_cra_init(struct crypto_aead *aead) |
| 4400 | { |
| 4401 | struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| 4402 | struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); |
| 4403 | struct crypto_alg *alg = tfm->__crt_alg; |
| 4404 | struct aead_alg *aalg = container_of(alg, struct aead_alg, base); |
| 4405 | struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s, |
| 4406 | alg.aead); |
| 4407 | |
| 4408 | int err = generic_cra_init(tfm, cipher_alg); |
| 4409 | |
| 4410 | flow_log("%s()\n", __func__); |
| 4411 | |
| 4412 | crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s)); |
| 4413 | ctx->is_esp = false; |
| 4414 | ctx->salt_len = 0; |
| 4415 | ctx->salt_offset = 0; |
| 4416 | |
| 4417 | /* random first IV */ |
| 4418 | get_random_bytes(ctx->iv, MAX_IV_SIZE); |
| 4419 | flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE); |
| 4420 | |
| 4421 | if (!err) { |
| 4422 | if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { |
| 4423 | flow_log("%s() creating fallback cipher\n", __func__); |
| 4424 | |
| 4425 | ctx->fallback_cipher = |
| 4426 | crypto_alloc_aead(alg->cra_name, 0, |
| 4427 | CRYPTO_ALG_ASYNC | |
| 4428 | CRYPTO_ALG_NEED_FALLBACK); |
| 4429 | if (IS_ERR(ctx->fallback_cipher)) { |
| 4430 | pr_err("%s() Error: failed to allocate fallback for %s\n", |
| 4431 | __func__, alg->cra_name); |
| 4432 | return PTR_ERR(ctx->fallback_cipher); |
| 4433 | } |
| 4434 | } |
| 4435 | } |
| 4436 | |
| 4437 | return err; |
| 4438 | } |
| 4439 | |
| 4440 | static void generic_cra_exit(struct crypto_tfm *tfm) |
| 4441 | { |
| 4442 | atomic_dec(&iproc_priv.session_count); |
| 4443 | } |
| 4444 | |
| 4445 | static void aead_cra_exit(struct crypto_aead *aead) |
| 4446 | { |
| 4447 | struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| 4448 | struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); |
| 4449 | |
| 4450 | generic_cra_exit(tfm); |
| 4451 | |
| 4452 | if (ctx->fallback_cipher) { |
| 4453 | crypto_free_aead(ctx->fallback_cipher); |
| 4454 | ctx->fallback_cipher = NULL; |
| 4455 | } |
| 4456 | } |
| 4457 | |
| 4458 | /** |
| 4459 | * spu_functions_register() - Specify hardware-specific SPU functions based on |
| 4460 | * SPU type read from device tree. |
| 4461 | * @dev: device structure |
| 4462 | * @spu_type: SPU hardware generation |
| 4463 | * @spu_subtype: SPU hardware version |
| 4464 | */ |
| 4465 | static void spu_functions_register(struct device *dev, |
| 4466 | enum spu_spu_type spu_type, |
| 4467 | enum spu_spu_subtype spu_subtype) |
| 4468 | { |
| 4469 | struct spu_hw *spu = &iproc_priv.spu; |
| 4470 | |
| 4471 | if (spu_type == SPU_TYPE_SPUM) { |
| 4472 | dev_dbg(dev, "Registering SPUM functions"); |
| 4473 | spu->spu_dump_msg_hdr = spum_dump_msg_hdr; |
| 4474 | spu->spu_payload_length = spum_payload_length; |
| 4475 | spu->spu_response_hdr_len = spum_response_hdr_len; |
| 4476 | spu->spu_hash_pad_len = spum_hash_pad_len; |
| 4477 | spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len; |
| 4478 | spu->spu_assoc_resp_len = spum_assoc_resp_len; |
| 4479 | spu->spu_aead_ivlen = spum_aead_ivlen; |
| 4480 | spu->spu_hash_type = spum_hash_type; |
| 4481 | spu->spu_digest_size = spum_digest_size; |
| 4482 | spu->spu_create_request = spum_create_request; |
| 4483 | spu->spu_cipher_req_init = spum_cipher_req_init; |
| 4484 | spu->spu_cipher_req_finish = spum_cipher_req_finish; |
| 4485 | spu->spu_request_pad = spum_request_pad; |
| 4486 | spu->spu_tx_status_len = spum_tx_status_len; |
| 4487 | spu->spu_rx_status_len = spum_rx_status_len; |
| 4488 | spu->spu_status_process = spum_status_process; |
| 4489 | spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload; |
| 4490 | spu->spu_ccm_update_iv = spum_ccm_update_iv; |
| 4491 | spu->spu_wordalign_padlen = spum_wordalign_padlen; |
| 4492 | if (spu_subtype == SPU_SUBTYPE_SPUM_NS2) |
| 4493 | spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload; |
| 4494 | else |
| 4495 | spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload; |
| 4496 | } else { |
| 4497 | dev_dbg(dev, "Registering SPU2 functions"); |
| 4498 | spu->spu_dump_msg_hdr = spu2_dump_msg_hdr; |
| 4499 | spu->spu_ctx_max_payload = spu2_ctx_max_payload; |
| 4500 | spu->spu_payload_length = spu2_payload_length; |
| 4501 | spu->spu_response_hdr_len = spu2_response_hdr_len; |
| 4502 | spu->spu_hash_pad_len = spu2_hash_pad_len; |
| 4503 | spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len; |
| 4504 | spu->spu_assoc_resp_len = spu2_assoc_resp_len; |
| 4505 | spu->spu_aead_ivlen = spu2_aead_ivlen; |
| 4506 | spu->spu_hash_type = spu2_hash_type; |
| 4507 | spu->spu_digest_size = spu2_digest_size; |
| 4508 | spu->spu_create_request = spu2_create_request; |
| 4509 | spu->spu_cipher_req_init = spu2_cipher_req_init; |
| 4510 | spu->spu_cipher_req_finish = spu2_cipher_req_finish; |
| 4511 | spu->spu_request_pad = spu2_request_pad; |
| 4512 | spu->spu_tx_status_len = spu2_tx_status_len; |
| 4513 | spu->spu_rx_status_len = spu2_rx_status_len; |
| 4514 | spu->spu_status_process = spu2_status_process; |
| 4515 | spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload; |
| 4516 | spu->spu_ccm_update_iv = spu2_ccm_update_iv; |
| 4517 | spu->spu_wordalign_padlen = spu2_wordalign_padlen; |
| 4518 | } |
| 4519 | } |
| 4520 | |
| 4521 | /** |
| 4522 | * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox |
| 4523 | * channel for the SPU being probed. |
| 4524 | * @dev: SPU driver device structure |
| 4525 | * |
| 4526 | * Return: 0 if successful |
| 4527 | * < 0 otherwise |
| 4528 | */ |
| 4529 | static int spu_mb_init(struct device *dev) |
| 4530 | { |
| 4531 | struct mbox_client *mcl = &iproc_priv.mcl[iproc_priv.spu.num_spu]; |
| 4532 | int err; |
| 4533 | |
| 4534 | mcl->dev = dev; |
| 4535 | mcl->tx_block = false; |
| 4536 | mcl->tx_tout = 0; |
| 4537 | mcl->knows_txdone = false; |
| 4538 | mcl->rx_callback = spu_rx_callback; |
| 4539 | mcl->tx_done = NULL; |
| 4540 | |
| 4541 | iproc_priv.mbox[iproc_priv.spu.num_spu] = |
| 4542 | mbox_request_channel(mcl, 0); |
| 4543 | if (IS_ERR(iproc_priv.mbox[iproc_priv.spu.num_spu])) { |
| 4544 | err = (int)PTR_ERR(iproc_priv.mbox[iproc_priv.spu.num_spu]); |
| 4545 | dev_err(dev, |
| 4546 | "Mbox channel %d request failed with err %d", |
| 4547 | iproc_priv.spu.num_spu, err); |
| 4548 | iproc_priv.mbox[iproc_priv.spu.num_spu] = NULL; |
| 4549 | return err; |
| 4550 | } |
| 4551 | |
| 4552 | return 0; |
| 4553 | } |
| 4554 | |
| 4555 | static void spu_mb_release(struct platform_device *pdev) |
| 4556 | { |
| 4557 | int i; |
| 4558 | |
| 4559 | for (i = 0; i < iproc_priv.spu.num_spu; i++) |
| 4560 | mbox_free_channel(iproc_priv.mbox[i]); |
| 4561 | } |
| 4562 | |
| 4563 | static void spu_counters_init(void) |
| 4564 | { |
| 4565 | int i; |
| 4566 | int j; |
| 4567 | |
| 4568 | atomic_set(&iproc_priv.session_count, 0); |
| 4569 | atomic_set(&iproc_priv.stream_count, 0); |
| 4570 | atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_spu); |
| 4571 | atomic64_set(&iproc_priv.bytes_in, 0); |
| 4572 | atomic64_set(&iproc_priv.bytes_out, 0); |
| 4573 | for (i = 0; i < SPU_OP_NUM; i++) { |
| 4574 | atomic_set(&iproc_priv.op_counts[i], 0); |
| 4575 | atomic_set(&iproc_priv.setkey_cnt[i], 0); |
| 4576 | } |
| 4577 | for (i = 0; i < CIPHER_ALG_LAST; i++) |
| 4578 | for (j = 0; j < CIPHER_MODE_LAST; j++) |
| 4579 | atomic_set(&iproc_priv.cipher_cnt[i][j], 0); |
| 4580 | |
| 4581 | for (i = 0; i < HASH_ALG_LAST; i++) { |
| 4582 | atomic_set(&iproc_priv.hash_cnt[i], 0); |
| 4583 | atomic_set(&iproc_priv.hmac_cnt[i], 0); |
| 4584 | } |
| 4585 | for (i = 0; i < AEAD_TYPE_LAST; i++) |
| 4586 | atomic_set(&iproc_priv.aead_cnt[i], 0); |
| 4587 | |
| 4588 | atomic_set(&iproc_priv.mb_no_spc, 0); |
| 4589 | atomic_set(&iproc_priv.mb_send_fail, 0); |
| 4590 | atomic_set(&iproc_priv.bad_icv, 0); |
| 4591 | } |
| 4592 | |
| 4593 | static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg) |
| 4594 | { |
| 4595 | struct spu_hw *spu = &iproc_priv.spu; |
| 4596 | struct crypto_alg *crypto = &driver_alg->alg.crypto; |
| 4597 | int err; |
| 4598 | |
| 4599 | /* SPU2 does not support RC4 */ |
| 4600 | if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) && |
| 4601 | (spu->spu_type == SPU_TYPE_SPU2)) |
| 4602 | return 0; |
| 4603 | |
| 4604 | crypto->cra_module = THIS_MODULE; |
| 4605 | crypto->cra_priority = cipher_pri; |
| 4606 | crypto->cra_alignmask = 0; |
| 4607 | crypto->cra_ctxsize = sizeof(struct iproc_ctx_s); |
| 4608 | INIT_LIST_HEAD(&crypto->cra_list); |
| 4609 | |
| 4610 | crypto->cra_init = ablkcipher_cra_init; |
| 4611 | crypto->cra_exit = generic_cra_exit; |
| 4612 | crypto->cra_type = &crypto_ablkcipher_type; |
| 4613 | crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | |
| 4614 | CRYPTO_ALG_KERN_DRIVER_ONLY; |
| 4615 | |
| 4616 | crypto->cra_ablkcipher.setkey = ablkcipher_setkey; |
| 4617 | crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt; |
| 4618 | crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt; |
| 4619 | |
| 4620 | err = crypto_register_alg(crypto); |
| 4621 | /* Mark alg as having been registered, if successful */ |
| 4622 | if (err == 0) |
| 4623 | driver_alg->registered = true; |
| 4624 | pr_debug(" registered ablkcipher %s\n", crypto->cra_driver_name); |
| 4625 | return err; |
| 4626 | } |
| 4627 | |
| 4628 | static int spu_register_ahash(struct iproc_alg_s *driver_alg) |
| 4629 | { |
| 4630 | struct spu_hw *spu = &iproc_priv.spu; |
| 4631 | struct ahash_alg *hash = &driver_alg->alg.hash; |
| 4632 | int err; |
| 4633 | |
| 4634 | /* AES-XCBC is the only AES hash type currently supported on SPU-M */ |
| 4635 | if ((driver_alg->auth_info.alg == HASH_ALG_AES) && |
| 4636 | (driver_alg->auth_info.mode != HASH_MODE_XCBC) && |
| 4637 | (spu->spu_type == SPU_TYPE_SPUM)) |
| 4638 | return 0; |
| 4639 | |
| 4640 | /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */ |
| 4641 | if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) && |
| 4642 | (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2)) |
| 4643 | return 0; |
| 4644 | |
| 4645 | hash->halg.base.cra_module = THIS_MODULE; |
| 4646 | hash->halg.base.cra_priority = hash_pri; |
| 4647 | hash->halg.base.cra_alignmask = 0; |
| 4648 | hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s); |
| 4649 | hash->halg.base.cra_init = ahash_cra_init; |
| 4650 | hash->halg.base.cra_exit = generic_cra_exit; |
| 4651 | hash->halg.base.cra_type = &crypto_ahash_type; |
| 4652 | hash->halg.base.cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC; |
| 4653 | hash->halg.statesize = sizeof(struct spu_hash_export_s); |
| 4654 | |
| 4655 | if (driver_alg->auth_info.mode != HASH_MODE_HMAC) { |
| 4656 | hash->setkey = ahash_setkey; |
| 4657 | hash->init = ahash_init; |
| 4658 | hash->update = ahash_update; |
| 4659 | hash->final = ahash_final; |
| 4660 | hash->finup = ahash_finup; |
| 4661 | hash->digest = ahash_digest; |
| 4662 | } else { |
| 4663 | hash->setkey = ahash_hmac_setkey; |
| 4664 | hash->init = ahash_hmac_init; |
| 4665 | hash->update = ahash_hmac_update; |
| 4666 | hash->final = ahash_hmac_final; |
| 4667 | hash->finup = ahash_hmac_finup; |
| 4668 | hash->digest = ahash_hmac_digest; |
| 4669 | } |
| 4670 | hash->export = ahash_export; |
| 4671 | hash->import = ahash_import; |
| 4672 | |
| 4673 | err = crypto_register_ahash(hash); |
| 4674 | /* Mark alg as having been registered, if successful */ |
| 4675 | if (err == 0) |
| 4676 | driver_alg->registered = true; |
| 4677 | pr_debug(" registered ahash %s\n", |
| 4678 | hash->halg.base.cra_driver_name); |
| 4679 | return err; |
| 4680 | } |
| 4681 | |
| 4682 | static int spu_register_aead(struct iproc_alg_s *driver_alg) |
| 4683 | { |
| 4684 | struct aead_alg *aead = &driver_alg->alg.aead; |
| 4685 | int err; |
| 4686 | |
| 4687 | aead->base.cra_module = THIS_MODULE; |
| 4688 | aead->base.cra_priority = aead_pri; |
| 4689 | aead->base.cra_alignmask = 0; |
| 4690 | aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s); |
| 4691 | INIT_LIST_HEAD(&aead->base.cra_list); |
| 4692 | |
| 4693 | aead->base.cra_flags |= CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC; |
| 4694 | /* setkey set in alg initialization */ |
| 4695 | aead->setauthsize = aead_setauthsize; |
| 4696 | aead->encrypt = aead_encrypt; |
| 4697 | aead->decrypt = aead_decrypt; |
| 4698 | aead->init = aead_cra_init; |
| 4699 | aead->exit = aead_cra_exit; |
| 4700 | |
| 4701 | err = crypto_register_aead(aead); |
| 4702 | /* Mark alg as having been registered, if successful */ |
| 4703 | if (err == 0) |
| 4704 | driver_alg->registered = true; |
| 4705 | pr_debug(" registered aead %s\n", aead->base.cra_driver_name); |
| 4706 | return err; |
| 4707 | } |
| 4708 | |
| 4709 | /* register crypto algorithms the device supports */ |
| 4710 | static int spu_algs_register(struct device *dev) |
| 4711 | { |
| 4712 | int i, j; |
| 4713 | int err; |
| 4714 | |
| 4715 | for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { |
| 4716 | switch (driver_algs[i].type) { |
| 4717 | case CRYPTO_ALG_TYPE_ABLKCIPHER: |
| 4718 | err = spu_register_ablkcipher(&driver_algs[i]); |
| 4719 | break; |
| 4720 | case CRYPTO_ALG_TYPE_AHASH: |
| 4721 | err = spu_register_ahash(&driver_algs[i]); |
| 4722 | break; |
| 4723 | case CRYPTO_ALG_TYPE_AEAD: |
| 4724 | err = spu_register_aead(&driver_algs[i]); |
| 4725 | break; |
| 4726 | default: |
| 4727 | dev_err(dev, |
| 4728 | "iproc-crypto: unknown alg type: %d", |
| 4729 | driver_algs[i].type); |
| 4730 | err = -EINVAL; |
| 4731 | } |
| 4732 | |
| 4733 | if (err) { |
| 4734 | dev_err(dev, "alg registration failed with error %d\n", |
| 4735 | err); |
| 4736 | goto err_algs; |
| 4737 | } |
| 4738 | } |
| 4739 | |
| 4740 | return 0; |
| 4741 | |
| 4742 | err_algs: |
| 4743 | for (j = 0; j < i; j++) { |
| 4744 | /* Skip any algorithm not registered */ |
| 4745 | if (!driver_algs[j].registered) |
| 4746 | continue; |
| 4747 | switch (driver_algs[j].type) { |
| 4748 | case CRYPTO_ALG_TYPE_ABLKCIPHER: |
| 4749 | crypto_unregister_alg(&driver_algs[j].alg.crypto); |
| 4750 | driver_algs[j].registered = false; |
| 4751 | break; |
| 4752 | case CRYPTO_ALG_TYPE_AHASH: |
| 4753 | crypto_unregister_ahash(&driver_algs[j].alg.hash); |
| 4754 | driver_algs[j].registered = false; |
| 4755 | break; |
| 4756 | case CRYPTO_ALG_TYPE_AEAD: |
| 4757 | crypto_unregister_aead(&driver_algs[j].alg.aead); |
| 4758 | driver_algs[j].registered = false; |
| 4759 | break; |
| 4760 | } |
| 4761 | } |
| 4762 | return err; |
| 4763 | } |
| 4764 | |
| 4765 | /* ==================== Kernel Platform API ==================== */ |
| 4766 | |
| 4767 | static struct spu_type_subtype spum_ns2_types = { |
| 4768 | SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2 |
| 4769 | }; |
| 4770 | |
| 4771 | static struct spu_type_subtype spum_nsp_types = { |
| 4772 | SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP |
| 4773 | }; |
| 4774 | |
| 4775 | static struct spu_type_subtype spu2_types = { |
| 4776 | SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1 |
| 4777 | }; |
| 4778 | |
| 4779 | static struct spu_type_subtype spu2_v2_types = { |
| 4780 | SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2 |
| 4781 | }; |
| 4782 | |
| 4783 | static const struct of_device_id bcm_spu_dt_ids[] = { |
| 4784 | { |
| 4785 | .compatible = "brcm,spum-crypto", |
| 4786 | .data = &spum_ns2_types, |
| 4787 | }, |
| 4788 | { |
| 4789 | .compatible = "brcm,spum-nsp-crypto", |
| 4790 | .data = &spum_nsp_types, |
| 4791 | }, |
| 4792 | { |
| 4793 | .compatible = "brcm,spu2-crypto", |
| 4794 | .data = &spu2_types, |
| 4795 | }, |
| 4796 | { |
| 4797 | .compatible = "brcm,spu2-v2-crypto", |
| 4798 | .data = &spu2_v2_types, |
| 4799 | }, |
| 4800 | { /* sentinel */ } |
| 4801 | }; |
| 4802 | |
| 4803 | MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids); |
| 4804 | |
| 4805 | static int spu_dt_read(struct platform_device *pdev) |
| 4806 | { |
| 4807 | struct device *dev = &pdev->dev; |
| 4808 | struct spu_hw *spu = &iproc_priv.spu; |
| 4809 | struct resource *spu_ctrl_regs; |
| 4810 | const struct of_device_id *match; |
| 4811 | const struct spu_type_subtype *matched_spu_type; |
| 4812 | void __iomem *spu_reg_vbase[MAX_SPUS]; |
| 4813 | int err; |
| 4814 | |
| 4815 | match = of_match_device(of_match_ptr(bcm_spu_dt_ids), dev); |
Gustavo A. R. Silva | c609048 | 2017-07-07 01:33:33 -0500 | [diff] [blame^] | 4816 | if (!match) { |
| 4817 | dev_err(&pdev->dev, "Failed to match device\n"); |
| 4818 | return -ENODEV; |
| 4819 | } |
| 4820 | |
Rob Rice | 9d12ba8 | 2017-02-03 12:55:33 -0500 | [diff] [blame] | 4821 | matched_spu_type = match->data; |
| 4822 | |
| 4823 | if (iproc_priv.spu.num_spu > 1) { |
| 4824 | /* If this is 2nd or later SPU, make sure it's same type */ |
| 4825 | if ((spu->spu_type != matched_spu_type->type) || |
| 4826 | (spu->spu_subtype != matched_spu_type->subtype)) { |
| 4827 | err = -EINVAL; |
| 4828 | dev_err(&pdev->dev, "Multiple SPU types not allowed"); |
| 4829 | return err; |
| 4830 | } |
| 4831 | } else { |
| 4832 | /* Record type of first SPU */ |
| 4833 | spu->spu_type = matched_spu_type->type; |
| 4834 | spu->spu_subtype = matched_spu_type->subtype; |
| 4835 | } |
| 4836 | |
| 4837 | /* Get and map SPU registers */ |
| 4838 | spu_ctrl_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 4839 | if (!spu_ctrl_regs) { |
| 4840 | err = -EINVAL; |
| 4841 | dev_err(&pdev->dev, "Invalid/missing registers for SPU\n"); |
| 4842 | return err; |
| 4843 | } |
| 4844 | |
| 4845 | spu_reg_vbase[iproc_priv.spu.num_spu] = |
| 4846 | devm_ioremap_resource(dev, spu_ctrl_regs); |
| 4847 | if (IS_ERR(spu_reg_vbase[iproc_priv.spu.num_spu])) { |
| 4848 | err = PTR_ERR(spu_reg_vbase[iproc_priv.spu.num_spu]); |
| 4849 | dev_err(&pdev->dev, "Failed to map registers: %d\n", |
| 4850 | err); |
| 4851 | spu_reg_vbase[iproc_priv.spu.num_spu] = NULL; |
| 4852 | return err; |
| 4853 | } |
| 4854 | |
| 4855 | dev_dbg(dev, "SPU %d detected.", iproc_priv.spu.num_spu); |
| 4856 | |
| 4857 | spu->reg_vbase[iproc_priv.spu.num_spu] = spu_reg_vbase; |
| 4858 | |
| 4859 | return 0; |
| 4860 | } |
| 4861 | |
| 4862 | int bcm_spu_probe(struct platform_device *pdev) |
| 4863 | { |
| 4864 | struct device *dev = &pdev->dev; |
| 4865 | struct spu_hw *spu = &iproc_priv.spu; |
| 4866 | int err = 0; |
| 4867 | |
| 4868 | iproc_priv.pdev[iproc_priv.spu.num_spu] = pdev; |
| 4869 | platform_set_drvdata(iproc_priv.pdev[iproc_priv.spu.num_spu], |
| 4870 | &iproc_priv); |
| 4871 | |
| 4872 | err = spu_dt_read(pdev); |
| 4873 | if (err < 0) |
| 4874 | goto failure; |
| 4875 | |
| 4876 | err = spu_mb_init(&pdev->dev); |
| 4877 | if (err < 0) |
| 4878 | goto failure; |
| 4879 | |
| 4880 | iproc_priv.spu.num_spu++; |
| 4881 | |
| 4882 | /* If already initialized, we've just added another SPU and are done */ |
| 4883 | if (iproc_priv.inited) |
| 4884 | return 0; |
| 4885 | |
| 4886 | if (spu->spu_type == SPU_TYPE_SPUM) |
| 4887 | iproc_priv.bcm_hdr_len = 8; |
| 4888 | else if (spu->spu_type == SPU_TYPE_SPU2) |
| 4889 | iproc_priv.bcm_hdr_len = 0; |
| 4890 | |
| 4891 | spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype); |
| 4892 | |
| 4893 | spu_counters_init(); |
| 4894 | |
| 4895 | spu_setup_debugfs(); |
| 4896 | |
| 4897 | err = spu_algs_register(dev); |
| 4898 | if (err < 0) |
| 4899 | goto fail_reg; |
| 4900 | |
| 4901 | iproc_priv.inited = true; |
| 4902 | |
| 4903 | return 0; |
| 4904 | |
| 4905 | fail_reg: |
| 4906 | spu_free_debugfs(); |
| 4907 | failure: |
| 4908 | spu_mb_release(pdev); |
| 4909 | dev_err(dev, "%s failed with error %d.\n", __func__, err); |
| 4910 | |
| 4911 | return err; |
| 4912 | } |
| 4913 | |
| 4914 | int bcm_spu_remove(struct platform_device *pdev) |
| 4915 | { |
| 4916 | int i; |
| 4917 | struct device *dev = &pdev->dev; |
| 4918 | char *cdn; |
| 4919 | |
| 4920 | for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { |
| 4921 | /* |
| 4922 | * Not all algorithms were registered, depending on whether |
| 4923 | * hardware is SPU or SPU2. So here we make sure to skip |
| 4924 | * those algorithms that were not previously registered. |
| 4925 | */ |
| 4926 | if (!driver_algs[i].registered) |
| 4927 | continue; |
| 4928 | |
| 4929 | switch (driver_algs[i].type) { |
| 4930 | case CRYPTO_ALG_TYPE_ABLKCIPHER: |
| 4931 | crypto_unregister_alg(&driver_algs[i].alg.crypto); |
| 4932 | dev_dbg(dev, " unregistered cipher %s\n", |
| 4933 | driver_algs[i].alg.crypto.cra_driver_name); |
| 4934 | driver_algs[i].registered = false; |
| 4935 | break; |
| 4936 | case CRYPTO_ALG_TYPE_AHASH: |
| 4937 | crypto_unregister_ahash(&driver_algs[i].alg.hash); |
| 4938 | cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name; |
| 4939 | dev_dbg(dev, " unregistered hash %s\n", cdn); |
| 4940 | driver_algs[i].registered = false; |
| 4941 | break; |
| 4942 | case CRYPTO_ALG_TYPE_AEAD: |
| 4943 | crypto_unregister_aead(&driver_algs[i].alg.aead); |
| 4944 | dev_dbg(dev, " unregistered aead %s\n", |
| 4945 | driver_algs[i].alg.aead.base.cra_driver_name); |
| 4946 | driver_algs[i].registered = false; |
| 4947 | break; |
| 4948 | } |
| 4949 | } |
| 4950 | spu_free_debugfs(); |
| 4951 | spu_mb_release(pdev); |
| 4952 | return 0; |
| 4953 | } |
| 4954 | |
| 4955 | /* ===== Kernel Module API ===== */ |
| 4956 | |
| 4957 | static struct platform_driver bcm_spu_pdriver = { |
| 4958 | .driver = { |
| 4959 | .name = "brcm-spu-crypto", |
| 4960 | .of_match_table = of_match_ptr(bcm_spu_dt_ids), |
| 4961 | }, |
| 4962 | .probe = bcm_spu_probe, |
| 4963 | .remove = bcm_spu_remove, |
| 4964 | }; |
| 4965 | module_platform_driver(bcm_spu_pdriver); |
| 4966 | |
| 4967 | MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>"); |
| 4968 | MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver"); |
| 4969 | MODULE_LICENSE("GPL v2"); |