Jeff Kirsher | ae06c70 | 2018-03-22 10:08:48 -0700 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
Jeff Kirsher | 51dce24 | 2018-04-26 08:08:09 -0700 | [diff] [blame] | 2 | /* Copyright(c) 1999 - 2018 Intel Corporation. */ |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 3 | |
| 4 | #include "e1000.h" |
| 5 | |
| 6 | /** |
| 7 | * e1000_raise_eec_clk - Raise EEPROM clock |
| 8 | * @hw: pointer to the HW structure |
| 9 | * @eecd: pointer to the EEPROM |
| 10 | * |
| 11 | * Enable/Raise the EEPROM clock bit. |
| 12 | **/ |
| 13 | static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) |
| 14 | { |
| 15 | *eecd = *eecd | E1000_EECD_SK; |
| 16 | ew32(EECD, *eecd); |
| 17 | e1e_flush(); |
| 18 | udelay(hw->nvm.delay_usec); |
| 19 | } |
| 20 | |
| 21 | /** |
| 22 | * e1000_lower_eec_clk - Lower EEPROM clock |
| 23 | * @hw: pointer to the HW structure |
| 24 | * @eecd: pointer to the EEPROM |
| 25 | * |
| 26 | * Clear/Lower the EEPROM clock bit. |
| 27 | **/ |
| 28 | static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) |
| 29 | { |
| 30 | *eecd = *eecd & ~E1000_EECD_SK; |
| 31 | ew32(EECD, *eecd); |
| 32 | e1e_flush(); |
| 33 | udelay(hw->nvm.delay_usec); |
| 34 | } |
| 35 | |
| 36 | /** |
| 37 | * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM |
| 38 | * @hw: pointer to the HW structure |
| 39 | * @data: data to send to the EEPROM |
| 40 | * @count: number of bits to shift out |
| 41 | * |
| 42 | * We need to shift 'count' bits out to the EEPROM. So, the value in the |
| 43 | * "data" parameter will be shifted out to the EEPROM one bit at a time. |
| 44 | * In order to do this, "data" must be broken down into bits. |
| 45 | **/ |
| 46 | static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) |
| 47 | { |
| 48 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 49 | u32 eecd = er32(EECD); |
| 50 | u32 mask; |
| 51 | |
Jacob Keller | 18dd239 | 2016-04-13 16:08:32 -0700 | [diff] [blame] | 52 | mask = BIT(count - 1); |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 53 | if (nvm->type == e1000_nvm_eeprom_spi) |
| 54 | eecd |= E1000_EECD_DO; |
| 55 | |
| 56 | do { |
| 57 | eecd &= ~E1000_EECD_DI; |
| 58 | |
| 59 | if (data & mask) |
| 60 | eecd |= E1000_EECD_DI; |
| 61 | |
| 62 | ew32(EECD, eecd); |
| 63 | e1e_flush(); |
| 64 | |
| 65 | udelay(nvm->delay_usec); |
| 66 | |
| 67 | e1000_raise_eec_clk(hw, &eecd); |
| 68 | e1000_lower_eec_clk(hw, &eecd); |
| 69 | |
| 70 | mask >>= 1; |
| 71 | } while (mask); |
| 72 | |
| 73 | eecd &= ~E1000_EECD_DI; |
| 74 | ew32(EECD, eecd); |
| 75 | } |
| 76 | |
| 77 | /** |
| 78 | * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM |
| 79 | * @hw: pointer to the HW structure |
| 80 | * @count: number of bits to shift in |
| 81 | * |
| 82 | * In order to read a register from the EEPROM, we need to shift 'count' bits |
| 83 | * in from the EEPROM. Bits are "shifted in" by raising the clock input to |
| 84 | * the EEPROM (setting the SK bit), and then reading the value of the data out |
| 85 | * "DO" bit. During this "shifting in" process the data in "DI" bit should |
| 86 | * always be clear. |
| 87 | **/ |
| 88 | static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) |
| 89 | { |
| 90 | u32 eecd; |
| 91 | u32 i; |
| 92 | u16 data; |
| 93 | |
| 94 | eecd = er32(EECD); |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 95 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| 96 | data = 0; |
| 97 | |
| 98 | for (i = 0; i < count; i++) { |
| 99 | data <<= 1; |
| 100 | e1000_raise_eec_clk(hw, &eecd); |
| 101 | |
| 102 | eecd = er32(EECD); |
| 103 | |
| 104 | eecd &= ~E1000_EECD_DI; |
| 105 | if (eecd & E1000_EECD_DO) |
| 106 | data |= 1; |
| 107 | |
| 108 | e1000_lower_eec_clk(hw, &eecd); |
| 109 | } |
| 110 | |
| 111 | return data; |
| 112 | } |
| 113 | |
| 114 | /** |
| 115 | * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion |
| 116 | * @hw: pointer to the HW structure |
| 117 | * @ee_reg: EEPROM flag for polling |
| 118 | * |
| 119 | * Polls the EEPROM status bit for either read or write completion based |
| 120 | * upon the value of 'ee_reg'. |
| 121 | **/ |
| 122 | s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) |
| 123 | { |
| 124 | u32 attempts = 100000; |
| 125 | u32 i, reg = 0; |
| 126 | |
| 127 | for (i = 0; i < attempts; i++) { |
| 128 | if (ee_reg == E1000_NVM_POLL_READ) |
| 129 | reg = er32(EERD); |
| 130 | else |
| 131 | reg = er32(EEWR); |
| 132 | |
| 133 | if (reg & E1000_NVM_RW_REG_DONE) |
| 134 | return 0; |
| 135 | |
| 136 | udelay(5); |
| 137 | } |
| 138 | |
| 139 | return -E1000_ERR_NVM; |
| 140 | } |
| 141 | |
| 142 | /** |
| 143 | * e1000e_acquire_nvm - Generic request for access to EEPROM |
| 144 | * @hw: pointer to the HW structure |
| 145 | * |
| 146 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| 147 | * Return successful if access grant bit set, else clear the request for |
| 148 | * EEPROM access and return -E1000_ERR_NVM (-1). |
| 149 | **/ |
| 150 | s32 e1000e_acquire_nvm(struct e1000_hw *hw) |
| 151 | { |
| 152 | u32 eecd = er32(EECD); |
| 153 | s32 timeout = E1000_NVM_GRANT_ATTEMPTS; |
| 154 | |
| 155 | ew32(EECD, eecd | E1000_EECD_REQ); |
| 156 | eecd = er32(EECD); |
| 157 | |
| 158 | while (timeout) { |
| 159 | if (eecd & E1000_EECD_GNT) |
| 160 | break; |
| 161 | udelay(5); |
| 162 | eecd = er32(EECD); |
| 163 | timeout--; |
| 164 | } |
| 165 | |
| 166 | if (!timeout) { |
| 167 | eecd &= ~E1000_EECD_REQ; |
| 168 | ew32(EECD, eecd); |
| 169 | e_dbg("Could not acquire NVM grant\n"); |
| 170 | return -E1000_ERR_NVM; |
| 171 | } |
| 172 | |
| 173 | return 0; |
| 174 | } |
| 175 | |
| 176 | /** |
| 177 | * e1000_standby_nvm - Return EEPROM to standby state |
| 178 | * @hw: pointer to the HW structure |
| 179 | * |
| 180 | * Return the EEPROM to a standby state. |
| 181 | **/ |
| 182 | static void e1000_standby_nvm(struct e1000_hw *hw) |
| 183 | { |
| 184 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 185 | u32 eecd = er32(EECD); |
| 186 | |
| 187 | if (nvm->type == e1000_nvm_eeprom_spi) { |
| 188 | /* Toggle CS to flush commands */ |
| 189 | eecd |= E1000_EECD_CS; |
| 190 | ew32(EECD, eecd); |
| 191 | e1e_flush(); |
| 192 | udelay(nvm->delay_usec); |
| 193 | eecd &= ~E1000_EECD_CS; |
| 194 | ew32(EECD, eecd); |
| 195 | e1e_flush(); |
| 196 | udelay(nvm->delay_usec); |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | /** |
| 201 | * e1000_stop_nvm - Terminate EEPROM command |
| 202 | * @hw: pointer to the HW structure |
| 203 | * |
| 204 | * Terminates the current command by inverting the EEPROM's chip select pin. |
| 205 | **/ |
| 206 | static void e1000_stop_nvm(struct e1000_hw *hw) |
| 207 | { |
| 208 | u32 eecd; |
| 209 | |
| 210 | eecd = er32(EECD); |
| 211 | if (hw->nvm.type == e1000_nvm_eeprom_spi) { |
| 212 | /* Pull CS high */ |
| 213 | eecd |= E1000_EECD_CS; |
| 214 | e1000_lower_eec_clk(hw, &eecd); |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | /** |
| 219 | * e1000e_release_nvm - Release exclusive access to EEPROM |
| 220 | * @hw: pointer to the HW structure |
| 221 | * |
| 222 | * Stop any current commands to the EEPROM and clear the EEPROM request bit. |
| 223 | **/ |
| 224 | void e1000e_release_nvm(struct e1000_hw *hw) |
| 225 | { |
| 226 | u32 eecd; |
| 227 | |
| 228 | e1000_stop_nvm(hw); |
| 229 | |
| 230 | eecd = er32(EECD); |
| 231 | eecd &= ~E1000_EECD_REQ; |
| 232 | ew32(EECD, eecd); |
| 233 | } |
| 234 | |
| 235 | /** |
| 236 | * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write |
| 237 | * @hw: pointer to the HW structure |
| 238 | * |
| 239 | * Setups the EEPROM for reading and writing. |
| 240 | **/ |
| 241 | static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) |
| 242 | { |
| 243 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 244 | u32 eecd = er32(EECD); |
| 245 | u8 spi_stat_reg; |
| 246 | |
| 247 | if (nvm->type == e1000_nvm_eeprom_spi) { |
| 248 | u16 timeout = NVM_MAX_RETRY_SPI; |
| 249 | |
| 250 | /* Clear SK and CS */ |
| 251 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| 252 | ew32(EECD, eecd); |
| 253 | e1e_flush(); |
| 254 | udelay(1); |
| 255 | |
Bruce Allan | e921eb1 | 2012-11-28 09:28:37 +0000 | [diff] [blame] | 256 | /* Read "Status Register" repeatedly until the LSB is cleared. |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 257 | * The EEPROM will signal that the command has been completed |
| 258 | * by clearing bit 0 of the internal status register. If it's |
| 259 | * not cleared within 'timeout', then error out. |
| 260 | */ |
| 261 | while (timeout) { |
| 262 | e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, |
| 263 | hw->nvm.opcode_bits); |
| 264 | spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); |
| 265 | if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) |
| 266 | break; |
| 267 | |
| 268 | udelay(5); |
| 269 | e1000_standby_nvm(hw); |
| 270 | timeout--; |
| 271 | } |
| 272 | |
| 273 | if (!timeout) { |
| 274 | e_dbg("SPI NVM Status error\n"); |
| 275 | return -E1000_ERR_NVM; |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | return 0; |
| 280 | } |
| 281 | |
| 282 | /** |
| 283 | * e1000e_read_nvm_eerd - Reads EEPROM using EERD register |
| 284 | * @hw: pointer to the HW structure |
| 285 | * @offset: offset of word in the EEPROM to read |
| 286 | * @words: number of words to read |
| 287 | * @data: word read from the EEPROM |
| 288 | * |
| 289 | * Reads a 16 bit word from the EEPROM using the EERD register. |
| 290 | **/ |
| 291 | s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| 292 | { |
| 293 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 294 | u32 i, eerd = 0; |
| 295 | s32 ret_val = 0; |
| 296 | |
Bruce Allan | e921eb1 | 2012-11-28 09:28:37 +0000 | [diff] [blame] | 297 | /* A check for invalid values: offset too large, too many words, |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 298 | * too many words for the offset, and not enough words. |
| 299 | */ |
| 300 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| 301 | (words == 0)) { |
| 302 | e_dbg("nvm parameter(s) out of bounds\n"); |
| 303 | return -E1000_ERR_NVM; |
| 304 | } |
| 305 | |
| 306 | for (i = 0; i < words; i++) { |
| 307 | eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) + |
| 308 | E1000_NVM_RW_REG_START; |
| 309 | |
| 310 | ew32(EERD, eerd); |
| 311 | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); |
David Ertman | 491a04d | 2014-07-09 16:07:42 +0000 | [diff] [blame] | 312 | if (ret_val) { |
| 313 | e_dbg("NVM read error: %d\n", ret_val); |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 314 | break; |
David Ertman | 491a04d | 2014-07-09 16:07:42 +0000 | [diff] [blame] | 315 | } |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 316 | |
| 317 | data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); |
| 318 | } |
| 319 | |
| 320 | return ret_val; |
| 321 | } |
| 322 | |
| 323 | /** |
| 324 | * e1000e_write_nvm_spi - Write to EEPROM using SPI |
| 325 | * @hw: pointer to the HW structure |
| 326 | * @offset: offset within the EEPROM to be written to |
| 327 | * @words: number of words to write |
| 328 | * @data: 16 bit word(s) to be written to the EEPROM |
| 329 | * |
| 330 | * Writes data to EEPROM at offset using SPI interface. |
| 331 | * |
| 332 | * If e1000e_update_nvm_checksum is not called after this function , the |
| 333 | * EEPROM will most likely contain an invalid checksum. |
| 334 | **/ |
| 335 | s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| 336 | { |
| 337 | struct e1000_nvm_info *nvm = &hw->nvm; |
Bruce Allan | 635ab56 | 2012-12-05 06:25:47 +0000 | [diff] [blame] | 338 | s32 ret_val = -E1000_ERR_NVM; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 339 | u16 widx = 0; |
| 340 | |
Bruce Allan | e921eb1 | 2012-11-28 09:28:37 +0000 | [diff] [blame] | 341 | /* A check for invalid values: offset too large, too many words, |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 342 | * and not enough words. |
| 343 | */ |
| 344 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| 345 | (words == 0)) { |
| 346 | e_dbg("nvm parameter(s) out of bounds\n"); |
| 347 | return -E1000_ERR_NVM; |
| 348 | } |
| 349 | |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 350 | while (widx < words) { |
| 351 | u8 write_opcode = NVM_WRITE_OPCODE_SPI; |
| 352 | |
Bruce Allan | 635ab56 | 2012-12-05 06:25:47 +0000 | [diff] [blame] | 353 | ret_val = nvm->ops.acquire(hw); |
Bruce Allan | ffacd47 | 2012-02-08 02:54:42 +0000 | [diff] [blame] | 354 | if (ret_val) |
Bruce Allan | 635ab56 | 2012-12-05 06:25:47 +0000 | [diff] [blame] | 355 | return ret_val; |
| 356 | |
| 357 | ret_val = e1000_ready_nvm_eeprom(hw); |
| 358 | if (ret_val) { |
| 359 | nvm->ops.release(hw); |
| 360 | return ret_val; |
| 361 | } |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 362 | |
| 363 | e1000_standby_nvm(hw); |
| 364 | |
| 365 | /* Send the WRITE ENABLE command (8 bit opcode) */ |
| 366 | e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, |
| 367 | nvm->opcode_bits); |
| 368 | |
| 369 | e1000_standby_nvm(hw); |
| 370 | |
Bruce Allan | e921eb1 | 2012-11-28 09:28:37 +0000 | [diff] [blame] | 371 | /* Some SPI eeproms use the 8th address bit embedded in the |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 372 | * opcode |
| 373 | */ |
| 374 | if ((nvm->address_bits == 8) && (offset >= 128)) |
| 375 | write_opcode |= NVM_A8_OPCODE_SPI; |
| 376 | |
| 377 | /* Send the Write command (8-bit opcode + addr) */ |
| 378 | e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); |
| 379 | e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), |
| 380 | nvm->address_bits); |
| 381 | |
| 382 | /* Loop to allow for up to whole page write of eeprom */ |
| 383 | while (widx < words) { |
| 384 | u16 word_out = data[widx]; |
David Ertman | 6cf08d1 | 2014-04-05 06:07:00 +0000 | [diff] [blame] | 385 | |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 386 | word_out = (word_out >> 8) | (word_out << 8); |
| 387 | e1000_shift_out_eec_bits(hw, word_out, 16); |
| 388 | widx++; |
| 389 | |
| 390 | if ((((offset + widx) * 2) % nvm->page_size) == 0) { |
| 391 | e1000_standby_nvm(hw); |
| 392 | break; |
| 393 | } |
| 394 | } |
Bruce Allan | 635ab56 | 2012-12-05 06:25:47 +0000 | [diff] [blame] | 395 | usleep_range(10000, 20000); |
| 396 | nvm->ops.release(hw); |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 397 | } |
| 398 | |
Bruce Allan | ffacd47 | 2012-02-08 02:54:42 +0000 | [diff] [blame] | 399 | return ret_val; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 400 | } |
| 401 | |
| 402 | /** |
| 403 | * e1000_read_pba_string_generic - Read device part number |
| 404 | * @hw: pointer to the HW structure |
| 405 | * @pba_num: pointer to device part number |
| 406 | * @pba_num_size: size of part number buffer |
| 407 | * |
| 408 | * Reads the product board assembly (PBA) number from the EEPROM and stores |
| 409 | * the value in pba_num. |
| 410 | **/ |
| 411 | s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, |
| 412 | u32 pba_num_size) |
| 413 | { |
| 414 | s32 ret_val; |
| 415 | u16 nvm_data; |
| 416 | u16 pba_ptr; |
| 417 | u16 offset; |
| 418 | u16 length; |
| 419 | |
| 420 | if (pba_num == NULL) { |
| 421 | e_dbg("PBA string buffer was null\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 422 | return -E1000_ERR_INVALID_ARGUMENT; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 423 | } |
| 424 | |
| 425 | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); |
| 426 | if (ret_val) { |
| 427 | e_dbg("NVM Read Error\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 428 | return ret_val; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 429 | } |
| 430 | |
| 431 | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); |
| 432 | if (ret_val) { |
| 433 | e_dbg("NVM Read Error\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 434 | return ret_val; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 435 | } |
| 436 | |
Bruce Allan | e921eb1 | 2012-11-28 09:28:37 +0000 | [diff] [blame] | 437 | /* if nvm_data is not ptr guard the PBA must be in legacy format which |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 438 | * means pba_ptr is actually our second data word for the PBA number |
| 439 | * and we can decode it into an ascii string |
| 440 | */ |
| 441 | if (nvm_data != NVM_PBA_PTR_GUARD) { |
| 442 | e_dbg("NVM PBA number is not stored as string\n"); |
| 443 | |
Bruce Allan | 3a3104e | 2012-12-05 06:26:46 +0000 | [diff] [blame] | 444 | /* make sure callers buffer is big enough to store the PBA */ |
| 445 | if (pba_num_size < E1000_PBANUM_LENGTH) { |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 446 | e_dbg("PBA string buffer too small\n"); |
| 447 | return E1000_ERR_NO_SPACE; |
| 448 | } |
| 449 | |
| 450 | /* extract hex string from data and pba_ptr */ |
| 451 | pba_num[0] = (nvm_data >> 12) & 0xF; |
| 452 | pba_num[1] = (nvm_data >> 8) & 0xF; |
| 453 | pba_num[2] = (nvm_data >> 4) & 0xF; |
| 454 | pba_num[3] = nvm_data & 0xF; |
| 455 | pba_num[4] = (pba_ptr >> 12) & 0xF; |
| 456 | pba_num[5] = (pba_ptr >> 8) & 0xF; |
| 457 | pba_num[6] = '-'; |
| 458 | pba_num[7] = 0; |
| 459 | pba_num[8] = (pba_ptr >> 4) & 0xF; |
| 460 | pba_num[9] = pba_ptr & 0xF; |
| 461 | |
| 462 | /* put a null character on the end of our string */ |
| 463 | pba_num[10] = '\0'; |
| 464 | |
| 465 | /* switch all the data but the '-' to hex char */ |
| 466 | for (offset = 0; offset < 10; offset++) { |
| 467 | if (pba_num[offset] < 0xA) |
| 468 | pba_num[offset] += '0'; |
| 469 | else if (pba_num[offset] < 0x10) |
| 470 | pba_num[offset] += 'A' - 0xA; |
| 471 | } |
| 472 | |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 473 | return 0; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 474 | } |
| 475 | |
| 476 | ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length); |
| 477 | if (ret_val) { |
| 478 | e_dbg("NVM Read Error\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 479 | return ret_val; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 480 | } |
| 481 | |
| 482 | if (length == 0xFFFF || length == 0) { |
| 483 | e_dbg("NVM PBA number section invalid length\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 484 | return -E1000_ERR_NVM_PBA_SECTION; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 485 | } |
| 486 | /* check if pba_num buffer is big enough */ |
| 487 | if (pba_num_size < (((u32)length * 2) - 1)) { |
| 488 | e_dbg("PBA string buffer too small\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 489 | return -E1000_ERR_NO_SPACE; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 490 | } |
| 491 | |
| 492 | /* trim pba length from start of string */ |
| 493 | pba_ptr++; |
| 494 | length--; |
| 495 | |
| 496 | for (offset = 0; offset < length; offset++) { |
| 497 | ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data); |
| 498 | if (ret_val) { |
| 499 | e_dbg("NVM Read Error\n"); |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 500 | return ret_val; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 501 | } |
| 502 | pba_num[offset * 2] = (u8)(nvm_data >> 8); |
| 503 | pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); |
| 504 | } |
| 505 | pba_num[offset * 2] = '\0'; |
| 506 | |
Bruce Allan | 5015e53 | 2012-02-08 02:55:56 +0000 | [diff] [blame] | 507 | return 0; |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 508 | } |
| 509 | |
| 510 | /** |
| 511 | * e1000_read_mac_addr_generic - Read device MAC address |
| 512 | * @hw: pointer to the HW structure |
| 513 | * |
| 514 | * Reads the device MAC address from the EEPROM and stores the value. |
| 515 | * Since devices with two ports use the same EEPROM, we increment the |
| 516 | * last bit in the MAC address for the second port. |
| 517 | **/ |
| 518 | s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) |
| 519 | { |
| 520 | u32 rar_high; |
| 521 | u32 rar_low; |
| 522 | u16 i; |
| 523 | |
| 524 | rar_high = er32(RAH(0)); |
| 525 | rar_low = er32(RAL(0)); |
| 526 | |
| 527 | for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) |
| 528 | hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8)); |
| 529 | |
| 530 | for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) |
| 531 | hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8)); |
| 532 | |
| 533 | for (i = 0; i < ETH_ALEN; i++) |
| 534 | hw->mac.addr[i] = hw->mac.perm_addr[i]; |
| 535 | |
| 536 | return 0; |
| 537 | } |
| 538 | |
| 539 | /** |
| 540 | * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum |
| 541 | * @hw: pointer to the HW structure |
| 542 | * |
| 543 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| 544 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| 545 | **/ |
| 546 | s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) |
| 547 | { |
| 548 | s32 ret_val; |
| 549 | u16 checksum = 0; |
| 550 | u16 i, nvm_data; |
| 551 | |
| 552 | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { |
| 553 | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); |
| 554 | if (ret_val) { |
| 555 | e_dbg("NVM Read Error\n"); |
| 556 | return ret_val; |
| 557 | } |
| 558 | checksum += nvm_data; |
| 559 | } |
| 560 | |
| 561 | if (checksum != (u16)NVM_SUM) { |
| 562 | e_dbg("NVM Checksum Invalid\n"); |
| 563 | return -E1000_ERR_NVM; |
| 564 | } |
| 565 | |
| 566 | return 0; |
| 567 | } |
| 568 | |
| 569 | /** |
| 570 | * e1000e_update_nvm_checksum_generic - Update EEPROM checksum |
| 571 | * @hw: pointer to the HW structure |
| 572 | * |
| 573 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| 574 | * up to the checksum. Then calculates the EEPROM checksum and writes the |
| 575 | * value to the EEPROM. |
| 576 | **/ |
| 577 | s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) |
| 578 | { |
| 579 | s32 ret_val; |
| 580 | u16 checksum = 0; |
| 581 | u16 i, nvm_data; |
| 582 | |
| 583 | for (i = 0; i < NVM_CHECKSUM_REG; i++) { |
| 584 | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); |
| 585 | if (ret_val) { |
| 586 | e_dbg("NVM Read Error while updating checksum.\n"); |
| 587 | return ret_val; |
| 588 | } |
| 589 | checksum += nvm_data; |
| 590 | } |
| 591 | checksum = (u16)NVM_SUM - checksum; |
| 592 | ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); |
| 593 | if (ret_val) |
| 594 | e_dbg("NVM Write Error while updating checksum.\n"); |
| 595 | |
| 596 | return ret_val; |
| 597 | } |
| 598 | |
| 599 | /** |
Bruce Allan | e85e363 | 2012-02-22 09:03:14 +0000 | [diff] [blame] | 600 | * e1000e_reload_nvm_generic - Reloads EEPROM |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 601 | * @hw: pointer to the HW structure |
| 602 | * |
| 603 | * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the |
| 604 | * extended control register. |
| 605 | **/ |
Bruce Allan | e85e363 | 2012-02-22 09:03:14 +0000 | [diff] [blame] | 606 | void e1000e_reload_nvm_generic(struct e1000_hw *hw) |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 607 | { |
| 608 | u32 ctrl_ext; |
| 609 | |
Bruce Allan | ce43a21 | 2013-02-20 04:06:32 +0000 | [diff] [blame] | 610 | usleep_range(10, 20); |
Bruce Allan | fe2ddfb5 | 2011-12-21 09:47:10 +0000 | [diff] [blame] | 611 | ctrl_ext = er32(CTRL_EXT); |
| 612 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| 613 | ew32(CTRL_EXT, ctrl_ext); |
| 614 | e1e_flush(); |
| 615 | } |