| /* |
| * libmad - MPEG audio decoder library |
| * Copyright (C) 2000-2004 Underbit Technologies, Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * $Id: layer3.c,v 1.43 2004/01/23 09:41:32 rob Exp $ |
| */ |
| |
| # ifdef HAVE_CONFIG_H |
| # include "config.h" |
| # endif |
| |
| # include "global.h" |
| |
| # include <stdlib.h> |
| # include <string.h> |
| |
| # ifdef HAVE_ASSERT_H |
| # include <assert.h> |
| # endif |
| |
| # ifdef HAVE_LIMITS_H |
| # include <limits.h> |
| # else |
| # define CHAR_BIT 8 |
| # endif |
| |
| # include "fixed.h" |
| # include "bit.h" |
| # include "stream.h" |
| # include "frame.h" |
| # include "huffman.h" |
| # include "layer3.h" |
| |
| /* --- Layer III ----------------------------------------------------------- */ |
| |
| enum { |
| count1table_select = 0x01, |
| scalefac_scale = 0x02, |
| preflag = 0x04, |
| mixed_block_flag = 0x08 |
| }; |
| |
| enum { |
| I_STEREO = 0x1, |
| MS_STEREO = 0x2 |
| }; |
| |
| struct sideinfo { |
| unsigned int main_data_begin; |
| unsigned int private_bits; |
| |
| unsigned char scfsi[2]; |
| |
| struct granule { |
| struct channel { |
| /* from side info */ |
| unsigned short part2_3_length; |
| unsigned short big_values; |
| unsigned short global_gain; |
| unsigned short scalefac_compress; |
| |
| unsigned char flags; |
| unsigned char block_type; |
| unsigned char table_select[3]; |
| unsigned char subblock_gain[3]; |
| unsigned char region0_count; |
| unsigned char region1_count; |
| |
| /* from main_data */ |
| unsigned char scalefac[39]; /* scalefac_l and/or scalefac_s */ |
| } ch[2]; |
| } gr[2]; |
| }; |
| |
| /* |
| * scalefactor bit lengths |
| * derived from section 2.4.2.7 of ISO/IEC 11172-3 |
| */ |
| static |
| struct { |
| unsigned char slen1; |
| unsigned char slen2; |
| } const sflen_table[16] = { |
| { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 }, |
| { 3, 0 }, { 1, 1 }, { 1, 2 }, { 1, 3 }, |
| { 2, 1 }, { 2, 2 }, { 2, 3 }, { 3, 1 }, |
| { 3, 2 }, { 3, 3 }, { 4, 2 }, { 4, 3 } |
| }; |
| |
| /* |
| * number of LSF scalefactor band values |
| * derived from section 2.4.3.2 of ISO/IEC 13818-3 |
| */ |
| static |
| unsigned char const nsfb_table[6][3][4] = { |
| { { 6, 5, 5, 5 }, |
| { 9, 9, 9, 9 }, |
| { 6, 9, 9, 9 } |
| }, |
| |
| { { 6, 5, 7, 3 }, |
| { 9, 9, 12, 6 }, |
| { 6, 9, 12, 6 } |
| }, |
| |
| { { 11, 10, 0, 0 }, |
| { 18, 18, 0, 0 }, |
| { 15, 18, 0, 0 } |
| }, |
| |
| { { 7, 7, 7, 0 }, |
| { 12, 12, 12, 0 }, |
| { 6, 15, 12, 0 } |
| }, |
| |
| { { 6, 6, 6, 3 }, |
| { 12, 9, 9, 6 }, |
| { 6, 12, 9, 6 } |
| }, |
| |
| { { 8, 8, 5, 0 }, |
| { 15, 12, 9, 0 }, |
| { 6, 18, 9, 0 } |
| } |
| }; |
| |
| /* |
| * MPEG-1 scalefactor band widths |
| * derived from Table B.8 of ISO/IEC 11172-3 |
| */ |
| static |
| unsigned char const sfb_48000_long[] = { |
| 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, 10, |
| 12, 16, 18, 22, 28, 34, 40, 46, 54, 54, 192 |
| }; |
| |
| static |
| unsigned char const sfb_44100_long[] = { |
| 4, 4, 4, 4, 4, 4, 6, 6, 8, 8, 10, |
| 12, 16, 20, 24, 28, 34, 42, 50, 54, 76, 158 |
| }; |
| |
| static |
| unsigned char const sfb_32000_long[] = { |
| 4, 4, 4, 4, 4, 4, 6, 6, 8, 10, 12, |
| 16, 20, 24, 30, 38, 46, 56, 68, 84, 102, 26 |
| }; |
| |
| static |
| unsigned char const sfb_48000_short[] = { |
| 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, |
| 6, 6, 6, 6, 6, 10, 10, 10, 12, 12, 12, 14, 14, |
| 14, 16, 16, 16, 20, 20, 20, 26, 26, 26, 66, 66, 66 |
| }; |
| |
| static |
| unsigned char const sfb_44100_short[] = { |
| 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, |
| 6, 6, 8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, |
| 14, 18, 18, 18, 22, 22, 22, 30, 30, 30, 56, 56, 56 |
| }; |
| |
| static |
| unsigned char const sfb_32000_short[] = { |
| 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, |
| 6, 6, 8, 8, 8, 12, 12, 12, 16, 16, 16, 20, 20, |
| 20, 26, 26, 26, 34, 34, 34, 42, 42, 42, 12, 12, 12 |
| }; |
| |
| static |
| unsigned char const sfb_48000_mixed[] = { |
| /* long */ 4, 4, 4, 4, 4, 4, 6, 6, |
| /* short */ 4, 4, 4, 6, 6, 6, 6, 6, 6, 10, |
| 10, 10, 12, 12, 12, 14, 14, 14, 16, 16, |
| 16, 20, 20, 20, 26, 26, 26, 66, 66, 66 |
| }; |
| |
| static |
| unsigned char const sfb_44100_mixed[] = { |
| /* long */ 4, 4, 4, 4, 4, 4, 6, 6, |
| /* short */ 4, 4, 4, 6, 6, 6, 8, 8, 8, 10, |
| 10, 10, 12, 12, 12, 14, 14, 14, 18, 18, |
| 18, 22, 22, 22, 30, 30, 30, 56, 56, 56 |
| }; |
| |
| static |
| unsigned char const sfb_32000_mixed[] = { |
| /* long */ 4, 4, 4, 4, 4, 4, 6, 6, |
| /* short */ 4, 4, 4, 6, 6, 6, 8, 8, 8, 12, |
| 12, 12, 16, 16, 16, 20, 20, 20, 26, 26, |
| 26, 34, 34, 34, 42, 42, 42, 12, 12, 12 |
| }; |
| |
| /* |
| * MPEG-2 scalefactor band widths |
| * derived from Table B.2 of ISO/IEC 13818-3 |
| */ |
| static |
| unsigned char const sfb_24000_long[] = { |
| 6, 6, 6, 6, 6, 6, 8, 10, 12, 14, 16, |
| 18, 22, 26, 32, 38, 46, 54, 62, 70, 76, 36 |
| }; |
| |
| static |
| unsigned char const sfb_22050_long[] = { |
| 6, 6, 6, 6, 6, 6, 8, 10, 12, 14, 16, |
| 20, 24, 28, 32, 38, 46, 52, 60, 68, 58, 54 |
| }; |
| |
| # define sfb_16000_long sfb_22050_long |
| |
| static |
| unsigned char const sfb_24000_short[] = { |
| 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, |
| 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, 14, 18, 18, |
| 18, 24, 24, 24, 32, 32, 32, 44, 44, 44, 12, 12, 12 |
| }; |
| |
| static |
| unsigned char const sfb_22050_short[] = { |
| 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, |
| 6, 6, 8, 8, 8, 10, 10, 10, 14, 14, 14, 18, 18, |
| 18, 26, 26, 26, 32, 32, 32, 42, 42, 42, 18, 18, 18 |
| }; |
| |
| static |
| unsigned char const sfb_16000_short[] = { |
| 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, |
| 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, 14, 18, 18, |
| 18, 24, 24, 24, 30, 30, 30, 40, 40, 40, 18, 18, 18 |
| }; |
| |
| static |
| unsigned char const sfb_24000_mixed[] = { |
| /* long */ 6, 6, 6, 6, 6, 6, |
| /* short */ 6, 6, 6, 8, 8, 8, 10, 10, 10, 12, |
| 12, 12, 14, 14, 14, 18, 18, 18, 24, 24, |
| 24, 32, 32, 32, 44, 44, 44, 12, 12, 12 |
| }; |
| |
| static |
| unsigned char const sfb_22050_mixed[] = { |
| /* long */ 6, 6, 6, 6, 6, 6, |
| /* short */ 6, 6, 6, 6, 6, 6, 8, 8, 8, 10, |
| 10, 10, 14, 14, 14, 18, 18, 18, 26, 26, |
| 26, 32, 32, 32, 42, 42, 42, 18, 18, 18 |
| }; |
| |
| static |
| unsigned char const sfb_16000_mixed[] = { |
| /* long */ 6, 6, 6, 6, 6, 6, |
| /* short */ 6, 6, 6, 8, 8, 8, 10, 10, 10, 12, |
| 12, 12, 14, 14, 14, 18, 18, 18, 24, 24, |
| 24, 30, 30, 30, 40, 40, 40, 18, 18, 18 |
| }; |
| |
| /* |
| * MPEG 2.5 scalefactor band widths |
| * derived from public sources |
| */ |
| # define sfb_12000_long sfb_16000_long |
| # define sfb_11025_long sfb_12000_long |
| |
| static |
| unsigned char const sfb_8000_long[] = { |
| 12, 12, 12, 12, 12, 12, 16, 20, 24, 28, 32, |
| 40, 48, 56, 64, 76, 90, 2, 2, 2, 2, 2 |
| }; |
| |
| # define sfb_12000_short sfb_16000_short |
| # define sfb_11025_short sfb_12000_short |
| |
| static |
| unsigned char const sfb_8000_short[] = { |
| 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 16, |
| 16, 16, 20, 20, 20, 24, 24, 24, 28, 28, 28, 36, 36, |
| 36, 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 26, 26 |
| }; |
| |
| # define sfb_12000_mixed sfb_16000_mixed |
| # define sfb_11025_mixed sfb_12000_mixed |
| |
| /* the 8000 Hz short block scalefactor bands do not break after |
| the first 36 frequency lines, so this is probably wrong */ |
| static |
| unsigned char const sfb_8000_mixed[] = { |
| /* long */ 12, 12, 12, |
| /* short */ 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16, |
| 20, 20, 20, 24, 24, 24, 28, 28, 28, 36, 36, 36, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 26, 26 |
| }; |
| |
| static |
| struct { |
| unsigned char const *l; |
| unsigned char const *s; |
| unsigned char const *m; |
| } const sfbwidth_table[9] = { |
| { sfb_48000_long, sfb_48000_short, sfb_48000_mixed }, |
| { sfb_44100_long, sfb_44100_short, sfb_44100_mixed }, |
| { sfb_32000_long, sfb_32000_short, sfb_32000_mixed }, |
| { sfb_24000_long, sfb_24000_short, sfb_24000_mixed }, |
| { sfb_22050_long, sfb_22050_short, sfb_22050_mixed }, |
| { sfb_16000_long, sfb_16000_short, sfb_16000_mixed }, |
| { sfb_12000_long, sfb_12000_short, sfb_12000_mixed }, |
| { sfb_11025_long, sfb_11025_short, sfb_11025_mixed }, |
| { sfb_8000_long, sfb_8000_short, sfb_8000_mixed } |
| }; |
| |
| /* |
| * scalefactor band preemphasis (used only when preflag is set) |
| * derived from Table B.6 of ISO/IEC 11172-3 |
| */ |
| static |
| unsigned char const pretab[22] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 2, 0 |
| }; |
| |
| /* |
| * table for requantization |
| * |
| * rq_table[x].mantissa * 2^(rq_table[x].exponent) = x^(4/3) |
| */ |
| static |
| struct fixedfloat { |
| unsigned long mantissa : 27; |
| unsigned short exponent : 5; |
| } const rq_table[8207] = { |
| # include "rq_table.dat" |
| }; |
| |
| /* |
| * fractional powers of two |
| * used for requantization and joint stereo decoding |
| * |
| * root_table[3 + x] = 2^(x/4) |
| */ |
| static |
| mad_fixed_t const root_table[7] = { |
| MAD_F(0x09837f05) /* 2^(-3/4) == 0.59460355750136 */, |
| MAD_F(0x0b504f33) /* 2^(-2/4) == 0.70710678118655 */, |
| MAD_F(0x0d744fcd) /* 2^(-1/4) == 0.84089641525371 */, |
| MAD_F(0x10000000) /* 2^( 0/4) == 1.00000000000000 */, |
| MAD_F(0x1306fe0a) /* 2^(+1/4) == 1.18920711500272 */, |
| MAD_F(0x16a09e66) /* 2^(+2/4) == 1.41421356237310 */, |
| MAD_F(0x1ae89f99) /* 2^(+3/4) == 1.68179283050743 */ |
| }; |
| |
| /* |
| * coefficients for aliasing reduction |
| * derived from Table B.9 of ISO/IEC 11172-3 |
| * |
| * c[] = { -0.6, -0.535, -0.33, -0.185, -0.095, -0.041, -0.0142, -0.0037 } |
| * cs[i] = 1 / sqrt(1 + c[i]^2) |
| * ca[i] = c[i] / sqrt(1 + c[i]^2) |
| */ |
| static |
| mad_fixed_t const cs[8] = { |
| +MAD_F(0x0db84a81) /* +0.857492926 */, +MAD_F(0x0e1b9d7f) /* +0.881741997 */, |
| +MAD_F(0x0f31adcf) /* +0.949628649 */, +MAD_F(0x0fbba815) /* +0.983314592 */, |
| +MAD_F(0x0feda417) /* +0.995517816 */, +MAD_F(0x0ffc8fc8) /* +0.999160558 */, |
| +MAD_F(0x0fff964c) /* +0.999899195 */, +MAD_F(0x0ffff8d3) /* +0.999993155 */ |
| }; |
| |
| static |
| mad_fixed_t const ca[8] = { |
| -MAD_F(0x083b5fe7) /* -0.514495755 */, -MAD_F(0x078c36d2) /* -0.471731969 */, |
| -MAD_F(0x05039814) /* -0.313377454 */, -MAD_F(0x02e91dd1) /* -0.181913200 */, |
| -MAD_F(0x0183603a) /* -0.094574193 */, -MAD_F(0x00a7cb87) /* -0.040965583 */, |
| -MAD_F(0x003a2847) /* -0.014198569 */, -MAD_F(0x000f27b4) /* -0.003699975 */ |
| }; |
| |
| /* |
| * IMDCT coefficients for short blocks |
| * derived from section 2.4.3.4.10.2 of ISO/IEC 11172-3 |
| * |
| * imdct_s[i/even][k] = cos((PI / 24) * (2 * (i / 2) + 7) * (2 * k + 1)) |
| * imdct_s[i /odd][k] = cos((PI / 24) * (2 * (6 + (i-1)/2) + 7) * (2 * k + 1)) |
| */ |
| static |
| mad_fixed_t const imdct_s[6][6] = { |
| # include "imdct_s.dat" |
| }; |
| |
| # if !defined(ASO_IMDCT) |
| /* |
| * windowing coefficients for long blocks |
| * derived from section 2.4.3.4.10.3 of ISO/IEC 11172-3 |
| * |
| * window_l[i] = sin((PI / 36) * (i + 1/2)) |
| */ |
| static |
| mad_fixed_t const window_l[36] = { |
| MAD_F(0x00b2aa3e) /* 0.043619387 */, MAD_F(0x0216a2a2) /* 0.130526192 */, |
| MAD_F(0x03768962) /* 0.216439614 */, MAD_F(0x04cfb0e2) /* 0.300705800 */, |
| MAD_F(0x061f78aa) /* 0.382683432 */, MAD_F(0x07635284) /* 0.461748613 */, |
| MAD_F(0x0898c779) /* 0.537299608 */, MAD_F(0x09bd7ca0) /* 0.608761429 */, |
| MAD_F(0x0acf37ad) /* 0.675590208 */, MAD_F(0x0bcbe352) /* 0.737277337 */, |
| MAD_F(0x0cb19346) /* 0.793353340 */, MAD_F(0x0d7e8807) /* 0.843391446 */, |
| |
| MAD_F(0x0e313245) /* 0.887010833 */, MAD_F(0x0ec835e8) /* 0.923879533 */, |
| MAD_F(0x0f426cb5) /* 0.953716951 */, MAD_F(0x0f9ee890) /* 0.976296007 */, |
| MAD_F(0x0fdcf549) /* 0.991444861 */, MAD_F(0x0ffc19fd) /* 0.999048222 */, |
| MAD_F(0x0ffc19fd) /* 0.999048222 */, MAD_F(0x0fdcf549) /* 0.991444861 */, |
| MAD_F(0x0f9ee890) /* 0.976296007 */, MAD_F(0x0f426cb5) /* 0.953716951 */, |
| MAD_F(0x0ec835e8) /* 0.923879533 */, MAD_F(0x0e313245) /* 0.887010833 */, |
| |
| MAD_F(0x0d7e8807) /* 0.843391446 */, MAD_F(0x0cb19346) /* 0.793353340 */, |
| MAD_F(0x0bcbe352) /* 0.737277337 */, MAD_F(0x0acf37ad) /* 0.675590208 */, |
| MAD_F(0x09bd7ca0) /* 0.608761429 */, MAD_F(0x0898c779) /* 0.537299608 */, |
| MAD_F(0x07635284) /* 0.461748613 */, MAD_F(0x061f78aa) /* 0.382683432 */, |
| MAD_F(0x04cfb0e2) /* 0.300705800 */, MAD_F(0x03768962) /* 0.216439614 */, |
| MAD_F(0x0216a2a2) /* 0.130526192 */, MAD_F(0x00b2aa3e) /* 0.043619387 */, |
| }; |
| # endif /* ASO_IMDCT */ |
| |
| /* |
| * windowing coefficients for short blocks |
| * derived from section 2.4.3.4.10.3 of ISO/IEC 11172-3 |
| * |
| * window_s[i] = sin((PI / 12) * (i + 1/2)) |
| */ |
| static |
| mad_fixed_t const window_s[12] = { |
| MAD_F(0x0216a2a2) /* 0.130526192 */, MAD_F(0x061f78aa) /* 0.382683432 */, |
| MAD_F(0x09bd7ca0) /* 0.608761429 */, MAD_F(0x0cb19346) /* 0.793353340 */, |
| MAD_F(0x0ec835e8) /* 0.923879533 */, MAD_F(0x0fdcf549) /* 0.991444861 */, |
| MAD_F(0x0fdcf549) /* 0.991444861 */, MAD_F(0x0ec835e8) /* 0.923879533 */, |
| MAD_F(0x0cb19346) /* 0.793353340 */, MAD_F(0x09bd7ca0) /* 0.608761429 */, |
| MAD_F(0x061f78aa) /* 0.382683432 */, MAD_F(0x0216a2a2) /* 0.130526192 */, |
| }; |
| |
| /* |
| * coefficients for intensity stereo processing |
| * derived from section 2.4.3.4.9.3 of ISO/IEC 11172-3 |
| * |
| * is_ratio[i] = tan(i * (PI / 12)) |
| * is_table[i] = is_ratio[i] / (1 + is_ratio[i]) |
| */ |
| static |
| mad_fixed_t const is_table[7] = { |
| MAD_F(0x00000000) /* 0.000000000 */, |
| MAD_F(0x0361962f) /* 0.211324865 */, |
| MAD_F(0x05db3d74) /* 0.366025404 */, |
| MAD_F(0x08000000) /* 0.500000000 */, |
| MAD_F(0x0a24c28c) /* 0.633974596 */, |
| MAD_F(0x0c9e69d1) /* 0.788675135 */, |
| MAD_F(0x10000000) /* 1.000000000 */ |
| }; |
| |
| /* |
| * coefficients for LSF intensity stereo processing |
| * derived from section 2.4.3.2 of ISO/IEC 13818-3 |
| * |
| * is_lsf_table[0][i] = (1 / sqrt(sqrt(2)))^(i + 1) |
| * is_lsf_table[1][i] = (1 / sqrt(2)) ^(i + 1) |
| */ |
| static |
| mad_fixed_t const is_lsf_table[2][15] = { |
| { |
| MAD_F(0x0d744fcd) /* 0.840896415 */, |
| MAD_F(0x0b504f33) /* 0.707106781 */, |
| MAD_F(0x09837f05) /* 0.594603558 */, |
| MAD_F(0x08000000) /* 0.500000000 */, |
| MAD_F(0x06ba27e6) /* 0.420448208 */, |
| MAD_F(0x05a8279a) /* 0.353553391 */, |
| MAD_F(0x04c1bf83) /* 0.297301779 */, |
| MAD_F(0x04000000) /* 0.250000000 */, |
| MAD_F(0x035d13f3) /* 0.210224104 */, |
| MAD_F(0x02d413cd) /* 0.176776695 */, |
| MAD_F(0x0260dfc1) /* 0.148650889 */, |
| MAD_F(0x02000000) /* 0.125000000 */, |
| MAD_F(0x01ae89fa) /* 0.105112052 */, |
| MAD_F(0x016a09e6) /* 0.088388348 */, |
| MAD_F(0x01306fe1) /* 0.074325445 */ |
| }, { |
| MAD_F(0x0b504f33) /* 0.707106781 */, |
| MAD_F(0x08000000) /* 0.500000000 */, |
| MAD_F(0x05a8279a) /* 0.353553391 */, |
| MAD_F(0x04000000) /* 0.250000000 */, |
| MAD_F(0x02d413cd) /* 0.176776695 */, |
| MAD_F(0x02000000) /* 0.125000000 */, |
| MAD_F(0x016a09e6) /* 0.088388348 */, |
| MAD_F(0x01000000) /* 0.062500000 */, |
| MAD_F(0x00b504f3) /* 0.044194174 */, |
| MAD_F(0x00800000) /* 0.031250000 */, |
| MAD_F(0x005a827a) /* 0.022097087 */, |
| MAD_F(0x00400000) /* 0.015625000 */, |
| MAD_F(0x002d413d) /* 0.011048543 */, |
| MAD_F(0x00200000) /* 0.007812500 */, |
| MAD_F(0x0016a09e) /* 0.005524272 */ |
| } |
| }; |
| |
| /* |
| * NAME: III_sideinfo() |
| * DESCRIPTION: decode frame side information from a bitstream |
| */ |
| static |
| enum mad_error III_sideinfo(struct mad_bitptr *ptr, unsigned int nch, |
| int lsf, struct sideinfo *si, |
| unsigned int *data_bitlen, |
| unsigned int *priv_bitlen) |
| { |
| unsigned int ngr, gr, ch, i; |
| enum mad_error result = MAD_ERROR_NONE; |
| |
| *data_bitlen = 0; |
| *priv_bitlen = lsf ? ((nch == 1) ? 1 : 2) : ((nch == 1) ? 5 : 3); |
| |
| si->main_data_begin = mad_bit_read(ptr, lsf ? 8 : 9); |
| si->private_bits = mad_bit_read(ptr, *priv_bitlen); |
| |
| ngr = 1; |
| if (!lsf) { |
| ngr = 2; |
| |
| for (ch = 0; ch < nch; ++ch) { |
| si->scfsi[ch] = mad_bit_read(ptr, 4); |
| } |
| } |
| |
| for (gr = 0; gr < ngr; ++gr) { |
| struct granule *granule = &si->gr[gr]; |
| |
| for (ch = 0; ch < nch; ++ch) { |
| struct channel *channel = &granule->ch[ch]; |
| |
| channel->part2_3_length = mad_bit_read(ptr, 12); |
| channel->big_values = mad_bit_read(ptr, 9); |
| channel->global_gain = mad_bit_read(ptr, 8); |
| channel->scalefac_compress = mad_bit_read(ptr, lsf ? 9 : 4); |
| |
| *data_bitlen += channel->part2_3_length; |
| |
| if (channel->big_values > 288 && result == 0) { |
| result = MAD_ERROR_BADBIGVALUES; |
| } |
| |
| channel->flags = 0; |
| |
| /* window_switching_flag */ |
| if (mad_bit_read(ptr, 1)) { |
| channel->block_type = mad_bit_read(ptr, 2); |
| |
| if (channel->block_type == 0 && result == 0) { |
| result = MAD_ERROR_BADBLOCKTYPE; |
| } |
| |
| if (!lsf && channel->block_type == 2 && si->scfsi[ch] && result == 0) { |
| result = MAD_ERROR_BADSCFSI; |
| } |
| |
| channel->region0_count = 7; |
| channel->region1_count = 36; |
| |
| if (mad_bit_read(ptr, 1)) { |
| channel->flags |= mixed_block_flag; |
| } else if (channel->block_type == 2) { |
| channel->region0_count = 8; |
| } |
| |
| for (i = 0; i < 2; ++i) { |
| channel->table_select[i] = mad_bit_read(ptr, 5); |
| } |
| |
| # if defined(DEBUG) |
| channel->table_select[2] = 4; /* not used */ |
| # endif |
| |
| for (i = 0; i < 3; ++i) { |
| channel->subblock_gain[i] = mad_bit_read(ptr, 3); |
| } |
| } else { |
| channel->block_type = 0; |
| |
| for (i = 0; i < 3; ++i) { |
| channel->table_select[i] = mad_bit_read(ptr, 5); |
| } |
| |
| channel->region0_count = mad_bit_read(ptr, 4); |
| channel->region1_count = mad_bit_read(ptr, 3); |
| } |
| |
| /* [preflag,] scalefac_scale, count1table_select */ |
| channel->flags |= mad_bit_read(ptr, lsf ? 2 : 3); |
| } |
| } |
| |
| return result; |
| } |
| |
| /* |
| * NAME: III_scalefactors_lsf() |
| * DESCRIPTION: decode channel scalefactors for LSF from a bitstream |
| */ |
| static |
| unsigned int III_scalefactors_lsf(struct mad_bitptr *ptr, |
| struct channel *channel, |
| struct channel *gr1ch, int mode_extension) |
| { |
| struct mad_bitptr start; |
| unsigned int scalefac_compress, index, slen[4], part, n, i; |
| unsigned char const *nsfb; |
| |
| start = *ptr; |
| |
| scalefac_compress = channel->scalefac_compress; |
| index = (channel->block_type == 2) ? |
| ((channel->flags & mixed_block_flag) ? 2 : 1) : 0; |
| |
| if (!((mode_extension & I_STEREO) && gr1ch)) { |
| if (scalefac_compress < 400) { |
| slen[0] = (scalefac_compress >> 4) / 5; |
| slen[1] = (scalefac_compress >> 4) % 5; |
| slen[2] = (scalefac_compress % 16) >> 2; |
| slen[3] = scalefac_compress % 4; |
| |
| nsfb = nsfb_table[0][index]; |
| } else if (scalefac_compress < 500) { |
| scalefac_compress -= 400; |
| |
| slen[0] = (scalefac_compress >> 2) / 5; |
| slen[1] = (scalefac_compress >> 2) % 5; |
| slen[2] = scalefac_compress % 4; |
| slen[3] = 0; |
| |
| nsfb = nsfb_table[1][index]; |
| } else { |
| scalefac_compress -= 500; |
| |
| slen[0] = scalefac_compress / 3; |
| slen[1] = scalefac_compress % 3; |
| slen[2] = 0; |
| slen[3] = 0; |
| |
| channel->flags |= preflag; |
| |
| nsfb = nsfb_table[2][index]; |
| } |
| |
| n = 0; |
| for (part = 0; part < 4; ++part) { |
| for (i = 0; i < nsfb[part]; ++i) { |
| channel->scalefac[n++] = mad_bit_read(ptr, slen[part]); |
| } |
| } |
| |
| while (n < 39) { |
| channel->scalefac[n++] = 0; |
| } |
| } else { /* (mode_extension & I_STEREO) && gr1ch (i.e. ch == 1) */ |
| scalefac_compress >>= 1; |
| |
| if (scalefac_compress < 180) { |
| slen[0] = scalefac_compress / 36; |
| slen[1] = (scalefac_compress % 36) / 6; |
| slen[2] = (scalefac_compress % 36) % 6; |
| slen[3] = 0; |
| |
| nsfb = nsfb_table[3][index]; |
| } else if (scalefac_compress < 244) { |
| scalefac_compress -= 180; |
| |
| slen[0] = (scalefac_compress % 64) >> 4; |
| slen[1] = (scalefac_compress % 16) >> 2; |
| slen[2] = scalefac_compress % 4; |
| slen[3] = 0; |
| |
| nsfb = nsfb_table[4][index]; |
| } else { |
| scalefac_compress -= 244; |
| |
| slen[0] = scalefac_compress / 3; |
| slen[1] = scalefac_compress % 3; |
| slen[2] = 0; |
| slen[3] = 0; |
| |
| nsfb = nsfb_table[5][index]; |
| } |
| |
| n = 0; |
| for (part = 0; part < 4; ++part) { |
| unsigned int max, is_pos; |
| |
| max = (1 << slen[part]) - 1; |
| |
| for (i = 0; i < nsfb[part]; ++i) { |
| is_pos = mad_bit_read(ptr, slen[part]); |
| |
| channel->scalefac[n] = is_pos; |
| gr1ch->scalefac[n++] = (is_pos == max); |
| } |
| } |
| |
| while (n < 39) { |
| channel->scalefac[n] = 0; |
| gr1ch->scalefac[n++] = 0; /* apparently not illegal */ |
| } |
| } |
| |
| return mad_bit_length(&start, ptr); |
| } |
| |
| /* |
| * NAME: III_scalefactors() |
| * DESCRIPTION: decode channel scalefactors of one granule from a bitstream |
| */ |
| static |
| unsigned int III_scalefactors(struct mad_bitptr *ptr, struct channel *channel, |
| struct channel const *gr0ch, unsigned int scfsi) |
| { |
| struct mad_bitptr start; |
| unsigned int slen1, slen2, sfbi; |
| |
| start = *ptr; |
| |
| slen1 = sflen_table[channel->scalefac_compress].slen1; |
| slen2 = sflen_table[channel->scalefac_compress].slen2; |
| |
| if (channel->block_type == 2) { |
| unsigned int nsfb; |
| |
| sfbi = 0; |
| |
| nsfb = (channel->flags & mixed_block_flag) ? 8 + 3 * 3 : 6 * 3; |
| while (nsfb--) { |
| channel->scalefac[sfbi++] = mad_bit_read(ptr, slen1); |
| } |
| |
| nsfb = 6 * 3; |
| while (nsfb--) { |
| channel->scalefac[sfbi++] = mad_bit_read(ptr, slen2); |
| } |
| |
| nsfb = 1 * 3; |
| while (nsfb--) { |
| channel->scalefac[sfbi++] = 0; |
| } |
| } else { /* channel->block_type != 2 */ |
| if (scfsi & 0x8) { |
| for (sfbi = 0; sfbi < 6; ++sfbi) { |
| channel->scalefac[sfbi] = gr0ch->scalefac[sfbi]; |
| } |
| } else { |
| for (sfbi = 0; sfbi < 6; ++sfbi) { |
| channel->scalefac[sfbi] = mad_bit_read(ptr, slen1); |
| } |
| } |
| |
| if (scfsi & 0x4) { |
| for (sfbi = 6; sfbi < 11; ++sfbi) { |
| channel->scalefac[sfbi] = gr0ch->scalefac[sfbi]; |
| } |
| } else { |
| for (sfbi = 6; sfbi < 11; ++sfbi) { |
| channel->scalefac[sfbi] = mad_bit_read(ptr, slen1); |
| } |
| } |
| |
| if (scfsi & 0x2) { |
| for (sfbi = 11; sfbi < 16; ++sfbi) { |
| channel->scalefac[sfbi] = gr0ch->scalefac[sfbi]; |
| } |
| } else { |
| for (sfbi = 11; sfbi < 16; ++sfbi) { |
| channel->scalefac[sfbi] = mad_bit_read(ptr, slen2); |
| } |
| } |
| |
| if (scfsi & 0x1) { |
| for (sfbi = 16; sfbi < 21; ++sfbi) { |
| channel->scalefac[sfbi] = gr0ch->scalefac[sfbi]; |
| } |
| } else { |
| for (sfbi = 16; sfbi < 21; ++sfbi) { |
| channel->scalefac[sfbi] = mad_bit_read(ptr, slen2); |
| } |
| } |
| |
| channel->scalefac[21] = 0; |
| } |
| |
| return mad_bit_length(&start, ptr); |
| } |
| |
| /* |
| * The Layer III formula for requantization and scaling is defined by |
| * section 2.4.3.4.7.1 of ISO/IEC 11172-3, as follows: |
| * |
| * long blocks: |
| * xr[i] = sign(is[i]) * abs(is[i])^(4/3) * |
| * 2^((1/4) * (global_gain - 210)) * |
| * 2^-(scalefac_multiplier * |
| * (scalefac_l[sfb] + preflag * pretab[sfb])) |
| * |
| * short blocks: |
| * xr[i] = sign(is[i]) * abs(is[i])^(4/3) * |
| * 2^((1/4) * (global_gain - 210 - 8 * subblock_gain[w])) * |
| * 2^-(scalefac_multiplier * scalefac_s[sfb][w]) |
| * |
| * where: |
| * scalefac_multiplier = (scalefac_scale + 1) / 2 |
| * |
| * The routines III_exponents() and III_requantize() facilitate this |
| * calculation. |
| */ |
| |
| /* |
| * NAME: III_exponents() |
| * DESCRIPTION: calculate scalefactor exponents |
| */ |
| static |
| void III_exponents(struct channel const *channel, |
| unsigned char const *sfbwidth, signed int exponents[39]) |
| { |
| signed int gain; |
| unsigned int scalefac_multiplier, sfbi; |
| |
| gain = (signed int) channel->global_gain - 210; |
| scalefac_multiplier = (channel->flags & scalefac_scale) ? 2 : 1; |
| |
| if (channel->block_type == 2) { |
| unsigned int l; |
| signed int gain0, gain1, gain2; |
| |
| sfbi = l = 0; |
| |
| if (channel->flags & mixed_block_flag) { |
| unsigned int premask; |
| |
| premask = (channel->flags & preflag) ? (2^32 - 1) : 0; |
| |
| /* long block subbands 0-1 */ |
| |
| while (l < 36) { |
| exponents[sfbi] = gain - |
| (signed int)((channel->scalefac[sfbi] + (pretab[sfbi] & premask)) << |
| scalefac_multiplier); |
| |
| l += sfbwidth[sfbi++]; |
| } |
| } |
| |
| /* this is probably wrong for 8000 Hz short/mixed blocks */ |
| |
| gain0 = gain - 8 * (signed int) channel->subblock_gain[0]; |
| gain1 = gain - 8 * (signed int) channel->subblock_gain[1]; |
| gain2 = gain - 8 * (signed int) channel->subblock_gain[2]; |
| |
| while (l < 576) { |
| exponents[sfbi + 0] = gain0 - |
| (signed int)(channel->scalefac[sfbi + 0] << scalefac_multiplier); |
| exponents[sfbi + 1] = gain1 - |
| (signed int)(channel->scalefac[sfbi + 1] << scalefac_multiplier); |
| exponents[sfbi + 2] = gain2 - |
| (signed int)(channel->scalefac[sfbi + 2] << scalefac_multiplier); |
| |
| l += 3 * sfbwidth[sfbi]; |
| sfbi += 3; |
| } |
| } else { /* channel->block_type != 2 */ |
| if (channel->flags & preflag) { |
| for (sfbi = 0; sfbi < 22; ++sfbi) { |
| exponents[sfbi] = gain - |
| (signed int)((channel->scalefac[sfbi] + pretab[sfbi]) << |
| scalefac_multiplier); |
| } |
| } else { |
| for (sfbi = 0; sfbi < 22; ++sfbi) { |
| exponents[sfbi] = gain - |
| (signed int)(channel->scalefac[sfbi] << scalefac_multiplier); |
| } |
| } |
| } |
| } |
| |
| /* |
| * NAME: III_requantize() |
| * DESCRIPTION: requantize one (positive) value |
| */ |
| static |
| mad_fixed_t III_requantize(unsigned int value, signed int exp) |
| { |
| mad_fixed_t requantized; |
| signed int frac; |
| struct fixedfloat const *power; |
| |
| frac = exp % 4; /* assumes sign(frac) == sign(exp) */ |
| exp /= 4; |
| |
| power = &rq_table[value]; |
| requantized = power->mantissa; |
| exp += power->exponent; |
| |
| if (exp < 0) { |
| if (-exp >= (int)(sizeof(mad_fixed_t) * CHAR_BIT)) { |
| /* underflow */ |
| requantized = 0; |
| } else { |
| requantized += 1L << (-exp - 1); |
| requantized >>= -exp; |
| } |
| } else { |
| if (exp >= 5) { |
| /* overflow */ |
| # if defined(DEBUG) |
| fprintf(stderr, "requantize overflow (%f * 2^%d)\n", |
| mad_f_todouble(requantized), exp); |
| # endif |
| requantized = MAD_F_MAX; |
| } else { |
| requantized <<= exp; |
| } |
| } |
| /*coverity[integer_overflow]: overflow will not occur*/ |
| return frac ? mad_f_mul(requantized, root_table[3 + frac]) : requantized; |
| } |
| |
| /* we must take care that sz >= bits and sz < sizeof(long) lest bits == 0 */ |
| # define MASK(cache, sz, bits) \ |
| (((cache) >> ((sz) - (bits))) & ((1 << (bits)) - 1)) |
| # define MASK1BIT(cache, sz) \ |
| ((cache) & (1 << ((sz) - 1))) |
| |
| /* |
| * NAME: III_huffdecode() |
| * DESCRIPTION: decode Huffman code words of one channel of one granule |
| */ |
| static |
| enum mad_error III_huffdecode(struct mad_bitptr *ptr, mad_fixed_t xr[576], |
| struct channel *channel, |
| unsigned char const *sfbwidth, |
| unsigned int part2_length) |
| { |
| signed int exponents[39], exp; |
| signed int const *expptr; |
| struct mad_bitptr peek; |
| signed int bits_left, cachesz; |
| register mad_fixed_t *xrptr; |
| mad_fixed_t const *sfbound; |
| register unsigned long bitcache; |
| |
| bits_left = (signed) channel->part2_3_length - (signed) part2_length; |
| if (bits_left < 0) { |
| return MAD_ERROR_BADPART3LEN; |
| } |
| |
| III_exponents(channel, sfbwidth, exponents); |
| |
| peek = *ptr; |
| mad_bit_skip(ptr, bits_left); |
| |
| /* align bit reads to byte boundaries */ |
| cachesz = mad_bit_bitsleft(&peek); |
| cachesz += ((32 - 1 - 24) + (24 - cachesz)) & ~7; |
| |
| bitcache = mad_bit_read(&peek, cachesz); |
| bits_left -= cachesz; |
| |
| xrptr = &xr[0]; |
| |
| /* big_values */ |
| { |
| unsigned int region, rcount; |
| struct hufftable const *entry; |
| union huffpair const *table; |
| unsigned int linbits, startbits, big_values, reqhits; |
| mad_fixed_t reqcache[16]; |
| |
| sfbound = xrptr + *sfbwidth++; |
| rcount = channel->region0_count + 1; |
| |
| entry = &mad_huff_pair_table[channel->table_select[region = 0]]; |
| table = entry->table; |
| linbits = entry->linbits; |
| startbits = entry->startbits; |
| |
| if (table == 0) { |
| return MAD_ERROR_BADHUFFTABLE; |
| } |
| |
| expptr = &exponents[0]; |
| exp = *expptr++; |
| reqhits = 0; |
| |
| big_values = channel->big_values; |
| |
| while (big_values-- && cachesz + bits_left > 0) { |
| union huffpair const *pair; |
| unsigned int clumpsz, value; |
| register mad_fixed_t requantized; |
| |
| if (xrptr == sfbound) { |
| sfbound += *sfbwidth++; |
| |
| /* change table if region boundary */ |
| |
| if (--rcount == 0) { |
| if (region == 0) { |
| rcount = channel->region1_count + 1; |
| } else { |
| rcount = 0; /* all remaining */ |
| } |
| |
| entry = &mad_huff_pair_table[channel->table_select[++region]]; |
| table = entry->table; |
| linbits = entry->linbits; |
| startbits = entry->startbits; |
| |
| if (table == 0) { |
| return MAD_ERROR_BADHUFFTABLE; |
| } |
| } |
| |
| if (exp != *expptr) { |
| exp = *expptr; |
| reqhits = 0; |
| } |
| |
| ++expptr; |
| } |
| |
| if (cachesz < 21) { |
| unsigned int bits; |
| |
| bits = ((32 - 1 - 21) + (21 - cachesz)) & ~7; |
| bitcache = (bitcache << bits) | mad_bit_read(&peek, bits); |
| cachesz += bits; |
| bits_left -= bits; |
| } |
| |
| /* hcod (0..19) */ |
| |
| clumpsz = startbits; |
| pair = &table[MASK(bitcache, cachesz, clumpsz)]; |
| |
| while (!pair->final) { |
| cachesz -= clumpsz; |
| |
| clumpsz = pair->ptr.bits; |
| pair = &table[pair->ptr.offset + MASK(bitcache, cachesz, clumpsz)]; |
| } |
| |
| cachesz -= pair->value.hlen; |
| |
| if (linbits) { |
| /* x (0..14) */ |
| |
| value = pair->value.x; |
| |
| switch (value) { |
| case 0: |
| xrptr[0] = 0; |
| break; |
| |
| case 15: |
| if (cachesz < (int)(linbits + 2)) { |
| bitcache = (bitcache << 16) | mad_bit_read(&peek, 16); |
| cachesz += 16; |
| bits_left -= 16; |
| } |
| |
| value += MASK(bitcache, cachesz, linbits); |
| cachesz -= linbits; |
| |
| requantized = III_requantize(value, exp); |
| goto x_final; |
| |
| default: |
| if (reqhits & (1 << value)) { |
| requantized = reqcache[value]; |
| } else { |
| reqhits |= (1 << value); |
| requantized = reqcache[value] = III_requantize(value, exp); |
| } |
| |
| x_final: |
| xrptr[0] = MASK1BIT(bitcache, cachesz--) ? |
| -requantized : requantized; |
| } |
| |
| /* y (0..14) */ |
| |
| value = pair->value.y; |
| |
| switch (value) { |
| case 0: |
| xrptr[1] = 0; |
| break; |
| |
| case 15: |
| if (cachesz < (int)(linbits + 1)) { |
| bitcache = (bitcache << 16) | mad_bit_read(&peek, 16); |
| cachesz += 16; |
| bits_left -= 16; |
| } |
| |
| value += MASK(bitcache, cachesz, linbits); |
| cachesz -= linbits; |
| |
| requantized = III_requantize(value, exp); |
| goto y_final; |
| |
| default: |
| if (reqhits & (1 << value)) { |
| requantized = reqcache[value]; |
| } else { |
| reqhits |= (1 << value); |
| requantized = reqcache[value] = III_requantize(value, exp); |
| } |
| |
| y_final: |
| xrptr[1] = MASK1BIT(bitcache, cachesz--) ? |
| -requantized : requantized; |
| } |
| } else { |
| /* x (0..1) */ |
| |
| value = pair->value.x; |
| |
| if (value == 0) { |
| xrptr[0] = 0; |
| } else { |
| if (reqhits & (1 << value)) { |
| requantized = reqcache[value]; |
| } else { |
| reqhits |= (1 << value); |
| requantized = reqcache[value] = III_requantize(value, exp); |
| } |
| |
| xrptr[0] = MASK1BIT(bitcache, cachesz--) ? |
| -requantized : requantized; |
| } |
| |
| /* y (0..1) */ |
| |
| value = pair->value.y; |
| |
| if (value == 0) { |
| xrptr[1] = 0; |
| } else { |
| if (reqhits & (1 << value)) { |
| requantized = reqcache[value]; |
| } else { |
| reqhits |= (1 << value); |
| requantized = reqcache[value] = III_requantize(value, exp); |
| } |
| |
| xrptr[1] = MASK1BIT(bitcache, cachesz--) ? |
| -requantized : requantized; |
| } |
| } |
| |
| xrptr += 2; |
| } |
| } |
| |
| if (cachesz + bits_left < 0) { |
| return MAD_ERROR_BADHUFFDATA; /* big_values overrun */ |
| } |
| |
| /* count1 */ |
| { |
| union huffquad const *table; |
| register mad_fixed_t requantized; |
| |
| table = mad_huff_quad_table[channel->flags & count1table_select]; |
| |
| requantized = III_requantize(1, exp); |
| |
| while (cachesz + bits_left > 0 && xrptr <= &xr[572]) { |
| union huffquad const *quad; |
| |
| /* hcod (1..6) */ |
| |
| if (cachesz < 10) { |
| bitcache = (bitcache << 16) | mad_bit_read(&peek, 16); |
| cachesz += 16; |
| bits_left -= 16; |
| } |
| |
| quad = &table[MASK(bitcache, cachesz, 4)]; |
| |
| /* quad tables guaranteed to have at most one extra lookup */ |
| if (!quad->final) { |
| cachesz -= 4; |
| |
| quad = &table[quad->ptr.offset + |
| MASK(bitcache, cachesz, quad->ptr.bits)]; |
| } |
| |
| cachesz -= quad->value.hlen; |
| |
| if (xrptr == sfbound) { |
| sfbound += *sfbwidth++; |
| |
| if (exp != *expptr) { |
| exp = *expptr; |
| requantized = III_requantize(1, exp); |
| } |
| |
| ++expptr; |
| } |
| |
| /* v (0..1) */ |
| |
| xrptr[0] = quad->value.v ? |
| (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0; |
| |
| /* w (0..1) */ |
| |
| xrptr[1] = quad->value.w ? |
| (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0; |
| |
| xrptr += 2; |
| |
| if (xrptr == sfbound) { |
| sfbound += *sfbwidth++; |
| |
| if (exp != *expptr) { |
| exp = *expptr; |
| requantized = III_requantize(1, exp); |
| } |
| |
| ++expptr; |
| } |
| |
| /* x (0..1) */ |
| |
| xrptr[0] = quad->value.x ? |
| (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0; |
| |
| /* y (0..1) */ |
| |
| xrptr[1] = quad->value.y ? |
| (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0; |
| |
| xrptr += 2; |
| } |
| |
| if (cachesz + bits_left < 0) { |
| # if 0 && defined(DEBUG) |
| fprintf(stderr, "huffman count1 overrun (%d bits)\n", |
| -(cachesz + bits_left)); |
| # endif |
| |
| /* technically the bitstream is misformatted, but apparently |
| some encoders are just a bit sloppy with stuffing bits */ |
| |
| xrptr -= 4; |
| } |
| } |
| |
| assert(-bits_left <= MAD_BUFFER_GUARD * CHAR_BIT); |
| |
| # if 0 && defined(DEBUG) |
| if (bits_left < 0) { |
| fprintf(stderr, "read %d bits too many\n", -bits_left); |
| } else if (cachesz + bits_left > 0) { |
| fprintf(stderr, "%d stuffing bits\n", cachesz + bits_left); |
| } |
| # endif |
| |
| /* rzero */ |
| while (xrptr < &xr[576]) { |
| xrptr[0] = 0; |
| xrptr[1] = 0; |
| |
| xrptr += 2; |
| } |
| |
| return MAD_ERROR_NONE; |
| } |
| |
| # undef MASK |
| # undef MASK1BIT |
| |
| /* |
| * NAME: III_reorder() |
| * DESCRIPTION: reorder frequency lines of a short block into subband order |
| */ |
| static |
| void III_reorder(mad_fixed_t xr[576], struct channel const *channel, |
| unsigned char const sfbwidth[39]) |
| { |
| mad_fixed_t tmp[32][3][6]; |
| unsigned int sb, l, f, w, sbw[3], sw[3]; |
| |
| /* this is probably wrong for 8000 Hz mixed blocks */ |
| |
| sb = 0; |
| if (channel->flags & mixed_block_flag) { |
| sb = 2; |
| |
| l = 0; |
| while (l < 36) { |
| l += *sfbwidth++; |
| } |
| } |
| |
| for (w = 0; w < 3; ++w) { |
| sbw[w] = sb; |
| sw[w] = 0; |
| } |
| |
| f = *sfbwidth++; |
| w = 0; |
| |
| for (l = 18 * sb; l < 576; ++l) { |
| if (f-- == 0) { |
| f = *sfbwidth++ - 1; |
| w = (w + 1) % 3; |
| } |
| |
| tmp[sbw[w]][w][sw[w]++] = xr[l]; |
| |
| if (sw[w] == 6) { |
| sw[w] = 0; |
| ++sbw[w]; |
| } |
| } |
| |
| memcpy(&xr[18 * sb], &tmp[sb], (576 - 18 * sb) * sizeof(mad_fixed_t)); |
| } |
| |
| /* |
| * NAME: III_stereo() |
| * DESCRIPTION: perform joint stereo processing on a granule |
| */ |
| static |
| enum mad_error III_stereo(mad_fixed_t xr[2][576], |
| struct granule const *granule, |
| struct mad_header *header, |
| unsigned char const *sfbwidth) |
| { |
| short modes[39]; |
| unsigned int sfbi, l, n, i; |
| |
| if (granule->ch[0].block_type != |
| granule->ch[1].block_type || |
| (granule->ch[0].flags & mixed_block_flag) != |
| (granule->ch[1].flags & mixed_block_flag)) { |
| return MAD_ERROR_BADSTEREO; |
| } |
| |
| for (i = 0; i < 39; ++i) { |
| modes[i] = header->mode_extension; |
| } |
| |
| /* intensity stereo */ |
| |
| if (header->mode_extension & I_STEREO) { |
| struct channel const *right_ch = &granule->ch[1]; |
| mad_fixed_t const *right_xr = xr[1]; |
| unsigned int is_pos; |
| |
| header->flags |= MAD_FLAG_I_STEREO; |
| |
| /* first determine which scalefactor bands are to be processed */ |
| |
| if (right_ch->block_type == 2) { |
| unsigned int lower, start, max, bound[3], w; |
| |
| lower = start = max = bound[0] = bound[1] = bound[2] = 0; |
| |
| sfbi = l = 0; |
| |
| if (right_ch->flags & mixed_block_flag) { |
| while (l < 36) { |
| n = sfbwidth[sfbi++]; |
| |
| for (i = 0; i < n; ++i) { |
| if (right_xr[i]) { |
| lower = sfbi; |
| break; |
| } |
| } |
| |
| right_xr += n; |
| l += n; |
| } |
| |
| start = sfbi; |
| } |
| |
| w = 0; |
| while (l < 576) { |
| n = sfbwidth[sfbi++]; |
| |
| for (i = 0; i < n; ++i) { |
| if (right_xr[i]) { |
| max = bound[w] = sfbi; |
| break; |
| } |
| } |
| |
| right_xr += n; |
| l += n; |
| w = (w + 1) % 3; |
| } |
| |
| if (max) { |
| lower = start; |
| } |
| |
| /* long blocks */ |
| |
| for (i = 0; i < lower; ++i) { |
| modes[i] = header->mode_extension & ~I_STEREO; |
| } |
| |
| /* short blocks */ |
| |
| w = 0; |
| for (i = start; i < max; ++i) { |
| if (i < bound[w]) { |
| modes[i] = header->mode_extension & ~I_STEREO; |
| } |
| |
| w = (w + 1) % 3; |
| } |
| } else { /* right_ch->block_type != 2 */ |
| unsigned int bound; |
| |
| bound = 0; |
| for (sfbi = l = 0; l < 576; l += n) { |
| n = sfbwidth[sfbi++]; |
| |
| for (i = 0; i < n; ++i) { |
| if (right_xr[i]) { |
| bound = sfbi; |
| break; |
| } |
| } |
| |
| right_xr += n; |
| } |
| |
| for (i = 0; i < bound; ++i) { |
| modes[i] = header->mode_extension & ~I_STEREO; |
| } |
| } |
| |
| /* now do the actual processing */ |
| |
| if (header->flags & MAD_FLAG_LSF_EXT) { |
| unsigned char const *illegal_pos = granule[1].ch[1].scalefac; |
| mad_fixed_t const *lsf_scale; |
| |
| /* intensity_scale */ |
| lsf_scale = is_lsf_table[right_ch->scalefac_compress & 0x1]; |
| |
| for (sfbi = l = 0; l < 576; ++sfbi, l += n) { |
| n = sfbwidth[sfbi]; |
| |
| if (!(modes[sfbi] & I_STEREO)) { |
| continue; |
| } |
| |
| if (illegal_pos[sfbi]) { |
| modes[sfbi] &= ~I_STEREO; |
| continue; |
| } |
| |
| is_pos = right_ch->scalefac[sfbi]; |
| |
| for (i = 0; i < n; ++i) { |
| register mad_fixed_t left; |
| |
| left = xr[0][l + i]; |
| |
| if (is_pos == 0) { |
| xr[1][l + i] = left; |
| } else { |
| register mad_fixed_t opposite; |
| |
| opposite = mad_f_mul(left, lsf_scale[(is_pos - 1) / 2]); |
| |
| if (is_pos & 1) { |
| xr[0][l + i] = opposite; |
| xr[1][l + i] = left; |
| } else { |
| xr[1][l + i] = opposite; |
| } |
| } |
| } |
| } |
| } else { /* !(header->flags & MAD_FLAG_LSF_EXT) */ |
| for (sfbi = l = 0; l < 576; ++sfbi, l += n) { |
| n = sfbwidth[sfbi]; |
| |
| if (!(modes[sfbi] & I_STEREO)) { |
| continue; |
| } |
| |
| is_pos = right_ch->scalefac[sfbi]; |
| |
| if (is_pos >= 7) { /* illegal intensity position */ |
| modes[sfbi] &= ~I_STEREO; |
| continue; |
| } |
| |
| for (i = 0; i < n; ++i) { |
| register mad_fixed_t left; |
| |
| left = xr[0][l + i]; |
| |
| xr[0][l + i] = mad_f_mul(left, is_table[ is_pos]); |
| xr[1][l + i] = mad_f_mul(left, is_table[6 - is_pos]); |
| } |
| } |
| } |
| } |
| |
| /* middle/side stereo */ |
| |
| if (header->mode_extension & MS_STEREO) { |
| register mad_fixed_t invsqrt2; |
| |
| header->flags |= MAD_FLAG_MS_STEREO; |
| |
| invsqrt2 = root_table[3 + -2]; |
| |
| for (sfbi = l = 0; l < 576; ++sfbi, l += n) { |
| n = sfbwidth[sfbi]; |
| |
| if (modes[sfbi] != MS_STEREO) { |
| continue; |
| } |
| |
| for (i = 0; i < n; ++i) { |
| register mad_fixed_t m, s; |
| |
| m = xr[0][l + i]; |
| s = xr[1][l + i]; |
| |
| xr[0][l + i] = mad_f_mul(m + s, invsqrt2); /* l = (m + s) / sqrt(2) */ |
| xr[1][l + i] = mad_f_mul(m - s, invsqrt2); /* r = (m - s) / sqrt(2) */ |
| } |
| } |
| } |
| |
| return MAD_ERROR_NONE; |
| } |
| |
| /* |
| * NAME: III_aliasreduce() |
| * DESCRIPTION: perform frequency line alias reduction |
| */ |
| static |
| void III_aliasreduce(mad_fixed_t xr[576], int lines) |
| { |
| mad_fixed_t const *bound; |
| int i; |
| |
| bound = &xr[lines]; |
| for (xr += 18; xr < bound; xr += 18) { |
| for (i = 0; i < 8; ++i) { |
| register mad_fixed_t a, b; |
| register mad_fixed64hi_t hi; |
| register mad_fixed64lo_t lo; |
| |
| a = xr[-1 - i]; |
| b = xr[ i]; |
| |
| # if defined(ASO_ZEROCHECK) |
| if (a | b) { |
| # endif |
| MAD_F_ML0(hi, lo, a, cs[i]); |
| MAD_F_MLA(hi, lo, -b, ca[i]); |
| |
| xr[-1 - i] = MAD_F_MLZ(hi, lo); |
| |
| MAD_F_ML0(hi, lo, b, cs[i]); |
| MAD_F_MLA(hi, lo, a, ca[i]); |
| |
| xr[ i] = MAD_F_MLZ(hi, lo); |
| # if defined(ASO_ZEROCHECK) |
| } |
| # endif |
| } |
| } |
| } |
| |
| # if defined(ASO_IMDCT) |
| void III_imdct_l(mad_fixed_t const [18], mad_fixed_t [36], unsigned int); |
| # else |
| # if 1 |
| static |
| void fastsdct(mad_fixed_t const x[9], mad_fixed_t *y) |
| { |
| mad_fixed_t a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12; |
| mad_fixed_t a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25; |
| mad_fixed_t m0, m1, m2, m3, m4, m5, m6, m7; |
| |
| enum { |
| c0 = MAD_F(0x1f838b8d), /* 2 * cos( 1 * PI / 18) */ |
| c1 = MAD_F(0x1bb67ae8), /* 2 * cos( 3 * PI / 18) */ |
| c2 = MAD_F(0x18836fa3), /* 2 * cos( 4 * PI / 18) */ |
| c3 = MAD_F(0x1491b752), /* 2 * cos( 5 * PI / 18) */ |
| c4 = MAD_F(0x0af1d43a), /* 2 * cos( 7 * PI / 18) */ |
| c5 = MAD_F(0x058e86a0), /* 2 * cos( 8 * PI / 18) */ |
| c6 = -MAD_F(0x1e11f642) /* 2 * cos(16 * PI / 18) */ |
| }; |
| |
| a0 = x[3] + x[5]; |
| a1 = x[3] - x[5]; |
| a2 = x[6] + x[2]; |
| a3 = x[6] - x[2]; |
| a4 = x[1] + x[7]; |
| a5 = x[1] - x[7]; |
| a6 = x[8] + x[0]; |
| a7 = x[8] - x[0]; |
| |
| a8 = a0 + a2; |
| a9 = a0 - a2; |
| a10 = a0 - a6; |
| a11 = a2 - a6; |
| a12 = a8 + a6; |
| a13 = a1 - a3; |
| a14 = a13 + a7; |
| a15 = a3 + a7; |
| a16 = a1 - a7; |
| a17 = a1 + a3; |
| |
| m0 = mad_f_mul(a17, -c3); |
| m1 = mad_f_mul(a16, -c0); |
| m2 = mad_f_mul(a15, -c4); |
| m3 = mad_f_mul(a14, -c1); |
| m4 = mad_f_mul(a5, -c1); |
| m5 = mad_f_mul(a11, -c6); |
| m6 = mad_f_mul(a10, -c5); |
| m7 = mad_f_mul(a9, -c2); |
| |
| a18 = x[4] + a4; |
| a19 = 2 * x[4] - a4; |
| a20 = a19 + m5; |
| a21 = a19 - m5; |
| a22 = a19 + m6; |
| a23 = m4 + m2; |
| a24 = m4 - m2; |
| a25 = m4 + m1; |
| |
| /* output to every other slot for convenience */ |
| |
| y[ 0] = a18 + a12; |
| y[ 2] = m0 - a25; |
| y[ 4] = m7 - a20; |
| y[ 6] = m3; |
| y[ 8] = a21 - m6; |
| y[10] = a24 - m1; |
| y[12] = a12 - 2 * a18; |
| y[14] = a23 + m0; |
| y[16] = a22 + m7; |
| } |
| |
| static inline |
| void sdctII(mad_fixed_t const x[18], mad_fixed_t X[18]) |
| { |
| mad_fixed_t tmp[9]; |
| int i; |
| |
| /* scale[i] = 2 * cos(PI * (2 * i + 1) / (2 * 18)) */ |
| static mad_fixed_t const scale[9] = { |
| MAD_F(0x1fe0d3b4), MAD_F(0x1ee8dd47), MAD_F(0x1d007930), |
| MAD_F(0x1a367e59), MAD_F(0x16a09e66), MAD_F(0x125abcf8), |
| MAD_F(0x0d8616bc), MAD_F(0x08483ee1), MAD_F(0x02c9fad7) |
| }; |
| |
| /* divide the 18-point SDCT-II into two 9-point SDCT-IIs */ |
| |
| /* even input butterfly */ |
| |
| for (i = 0; i < 9; i += 3) { |
| tmp[i + 0] = x[i + 0] + x[18 - (i + 0) - 1]; |
| tmp[i + 1] = x[i + 1] + x[18 - (i + 1) - 1]; |
| tmp[i + 2] = x[i + 2] + x[18 - (i + 2) - 1]; |
| } |
| |
| fastsdct(tmp, &X[0]); |
| |
| /* odd input butterfly and scaling */ |
| |
| for (i = 0; i < 9; i += 3) { |
| tmp[i + 0] = mad_f_mul(x[i + 0] - x[18 - (i + 0) - 1], scale[i + 0]); |
| tmp[i + 1] = mad_f_mul(x[i + 1] - x[18 - (i + 1) - 1], scale[i + 1]); |
| tmp[i + 2] = mad_f_mul(x[i + 2] - x[18 - (i + 2) - 1], scale[i + 2]); |
| } |
| |
| fastsdct(tmp, &X[1]); |
| |
| /* output accumulation */ |
| |
| for (i = 3; i < 18; i += 8) { |
| X[i + 0] -= X[(i + 0) - 2]; |
| X[i + 2] -= X[(i + 2) - 2]; |
| X[i + 4] -= X[(i + 4) - 2]; |
| X[i + 6] -= X[(i + 6) - 2]; |
| } |
| } |
| |
| static inline |
| void dctIV(mad_fixed_t const y[18], mad_fixed_t X[18]) |
| { |
| mad_fixed_t tmp[18]; |
| int i; |
| |
| /* scale[i] = 2 * cos(PI * (2 * i + 1) / (4 * 18)) */ |
| static mad_fixed_t const scale[18] = { |
| MAD_F(0x1ff833fa), MAD_F(0x1fb9ea93), MAD_F(0x1f3dd120), |
| MAD_F(0x1e84d969), MAD_F(0x1d906bcf), MAD_F(0x1c62648b), |
| MAD_F(0x1afd100f), MAD_F(0x1963268b), MAD_F(0x1797c6a4), |
| MAD_F(0x159e6f5b), MAD_F(0x137af940), MAD_F(0x11318ef3), |
| MAD_F(0x0ec6a507), MAD_F(0x0c3ef153), MAD_F(0x099f61c5), |
| MAD_F(0x06ed12c5), MAD_F(0x042d4544), MAD_F(0x0165547c) |
| }; |
| |
| /* scaling */ |
| |
| for (i = 0; i < 18; i += 3) { |
| tmp[i + 0] = mad_f_mul(y[i + 0], scale[i + 0]); |
| tmp[i + 1] = mad_f_mul(y[i + 1], scale[i + 1]); |
| tmp[i + 2] = mad_f_mul(y[i + 2], scale[i + 2]); |
| } |
| |
| /* SDCT-II */ |
| |
| sdctII(tmp, X); |
| |
| /* scale reduction and output accumulation */ |
| |
| X[0] /= 2; |
| for (i = 1; i < 17; i += 4) { |
| X[i + 0] = X[i + 0] / 2 - X[(i + 0) - 1]; |
| X[i + 1] = X[i + 1] / 2 - X[(i + 1) - 1]; |
| X[i + 2] = X[i + 2] / 2 - X[(i + 2) - 1]; |
| X[i + 3] = X[i + 3] / 2 - X[(i + 3) - 1]; |
| } |
| X[17] = X[17] / 2 - X[16]; |
| } |
| |
| /* |
| * NAME: imdct36 |
| * DESCRIPTION: perform X[18]->x[36] IMDCT using Szu-Wei Lee's fast algorithm |
| */ |
| static inline |
| void imdct36(mad_fixed_t const x[18], mad_fixed_t y[36]) |
| { |
| mad_fixed_t tmp[18]; |
| int i; |
| |
| /* DCT-IV */ |
| |
| dctIV(x, tmp); |
| |
| /* convert 18-point DCT-IV to 36-point IMDCT */ |
| |
| for (i = 0; i < 9; i += 3) { |
| y[i + 0] = tmp[9 + (i + 0)]; |
| y[i + 1] = tmp[9 + (i + 1)]; |
| y[i + 2] = tmp[9 + (i + 2)]; |
| } |
| for (i = 9; i < 27; i += 3) { |
| y[i + 0] = -tmp[36 - (9 + (i + 0)) - 1]; |
| y[i + 1] = -tmp[36 - (9 + (i + 1)) - 1]; |
| y[i + 2] = -tmp[36 - (9 + (i + 2)) - 1]; |
| } |
| for (i = 27; i < 36; i += 3) { |
| y[i + 0] = -tmp[(i + 0) - 27]; |
| y[i + 1] = -tmp[(i + 1) - 27]; |
| y[i + 2] = -tmp[(i + 2) - 27]; |
| } |
| } |
| # else |
| /* |
| * NAME: imdct36 |
| * DESCRIPTION: perform X[18]->x[36] IMDCT |
| */ |
| static inline |
| void imdct36(mad_fixed_t const X[18], mad_fixed_t x[36]) |
| { |
| mad_fixed_t t0, t1, t2, t3, t4, t5, t6, t7; |
| mad_fixed_t t8, t9, t10, t11, t12, t13, t14, t15; |
| register mad_fixed64hi_t hi; |
| register mad_fixed64lo_t lo; |
| |
| MAD_F_ML0(hi, lo, X[4], MAD_F(0x0ec835e8)); |
| MAD_F_MLA(hi, lo, X[13], MAD_F(0x061f78aa)); |
| |
| t6 = MAD_F_MLZ(hi, lo); |
| |
| MAD_F_MLA(hi, lo, (t14 = X[1] - X[10]), -MAD_F(0x061f78aa)); |
| MAD_F_MLA(hi, lo, (t15 = X[7] + X[16]), -MAD_F(0x0ec835e8)); |
| |
| t0 = MAD_F_MLZ(hi, lo); |
| |
| MAD_F_MLA(hi, lo, (t8 = X[0] - X[11] - X[12]), MAD_F(0x0216a2a2)); |
| MAD_F_MLA(hi, lo, (t9 = X[2] - X[9] - X[14]), MAD_F(0x09bd7ca0)); |
| MAD_F_MLA(hi, lo, (t10 = X[3] - X[8] - X[15]), -MAD_F(0x0cb19346)); |
| MAD_F_MLA(hi, lo, (t11 = X[5] - X[6] - X[17]), -MAD_F(0x0fdcf549)); |
| |
| x[7] = MAD_F_MLZ(hi, lo); |
| x[10] = -x[7]; |
| |
| MAD_F_ML0(hi, lo, t8, -MAD_F(0x0cb19346)); |
| MAD_F_MLA(hi, lo, t9, MAD_F(0x0fdcf549)); |
| MAD_F_MLA(hi, lo, t10, MAD_F(0x0216a2a2)); |
| MAD_F_MLA(hi, lo, t11, -MAD_F(0x09bd7ca0)); |
| |
| x[19] = x[34] = MAD_F_MLZ(hi, lo) - t0; |
| |
| t12 = X[0] - X[3] + X[8] - X[11] - X[12] + X[15]; |
| t13 = X[2] + X[5] - X[6] - X[9] - X[14] - X[17]; |
| |
| MAD_F_ML0(hi, lo, t12, -MAD_F(0x0ec835e8)); |
| MAD_F_MLA(hi, lo, t13, MAD_F(0x061f78aa)); |
| |
| x[22] = x[31] = MAD_F_MLZ(hi, lo) + t0; |
| |
| MAD_F_ML0(hi, lo, X[1], -MAD_F(0x09bd7ca0)); |
| MAD_F_MLA(hi, lo, X[7], MAD_F(0x0216a2a2)); |
| MAD_F_MLA(hi, lo, X[10], -MAD_F(0x0fdcf549)); |
| MAD_F_MLA(hi, lo, X[16], MAD_F(0x0cb19346)); |
| |
| t1 = MAD_F_MLZ(hi, lo) + t6; |
| |
| MAD_F_ML0(hi, lo, X[0], MAD_F(0x03768962)); |
| MAD_F_MLA(hi, lo, X[2], MAD_F(0x0e313245)); |
| MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0ffc19fd)); |
| MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0acf37ad)); |
| MAD_F_MLA(hi, lo, X[6], MAD_F(0x04cfb0e2)); |
| MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0898c779)); |
| MAD_F_MLA(hi, lo, X[9], MAD_F(0x0d7e8807)); |
| MAD_F_MLA(hi, lo, X[11], MAD_F(0x0f426cb5)); |
| MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0bcbe352)); |
| MAD_F_MLA(hi, lo, X[14], MAD_F(0x00b2aa3e)); |
| MAD_F_MLA(hi, lo, X[15], -MAD_F(0x07635284)); |
| MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0f9ee890)); |
| |
| x[6] = MAD_F_MLZ(hi, lo) + t1; |
| x[11] = -x[6]; |
| |
| MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0f426cb5)); |
| MAD_F_MLA(hi, lo, X[2], -MAD_F(0x00b2aa3e)); |
| MAD_F_MLA(hi, lo, X[3], MAD_F(0x0898c779)); |
| MAD_F_MLA(hi, lo, X[5], MAD_F(0x0f9ee890)); |
| MAD_F_MLA(hi, lo, X[6], MAD_F(0x0acf37ad)); |
| MAD_F_MLA(hi, lo, X[8], -MAD_F(0x07635284)); |
| MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0e313245)); |
| MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0bcbe352)); |
| MAD_F_MLA(hi, lo, X[12], -MAD_F(0x03768962)); |
| MAD_F_MLA(hi, lo, X[14], MAD_F(0x0d7e8807)); |
| MAD_F_MLA(hi, lo, X[15], MAD_F(0x0ffc19fd)); |
| MAD_F_MLA(hi, lo, X[17], MAD_F(0x04cfb0e2)); |
| |
| x[23] = x[30] = MAD_F_MLZ(hi, lo) + t1; |
| |
| MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0bcbe352)); |
| MAD_F_MLA(hi, lo, X[2], MAD_F(0x0d7e8807)); |
| MAD_F_MLA(hi, lo, X[3], -MAD_F(0x07635284)); |
| MAD_F_MLA(hi, lo, X[5], MAD_F(0x04cfb0e2)); |
| MAD_F_MLA(hi, lo, X[6], MAD_F(0x0f9ee890)); |
| MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0ffc19fd)); |
| MAD_F_MLA(hi, lo, X[9], -MAD_F(0x00b2aa3e)); |
| MAD_F_MLA(hi, lo, X[11], MAD_F(0x03768962)); |
| MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0f426cb5)); |
| MAD_F_MLA(hi, lo, X[14], MAD_F(0x0e313245)); |
| MAD_F_MLA(hi, lo, X[15], MAD_F(0x0898c779)); |
| MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0acf37ad)); |
| |
| x[18] = x[35] = MAD_F_MLZ(hi, lo) - t1; |
| |
| MAD_F_ML0(hi, lo, X[4], MAD_F(0x061f78aa)); |
| MAD_F_MLA(hi, lo, X[13], -MAD_F(0x0ec835e8)); |
| |
| t7 = MAD_F_MLZ(hi, lo); |
| |
| MAD_F_MLA(hi, lo, X[1], -MAD_F(0x0cb19346)); |
| MAD_F_MLA(hi, lo, X[7], MAD_F(0x0fdcf549)); |
| MAD_F_MLA(hi, lo, X[10], MAD_F(0x0216a2a2)); |
| MAD_F_MLA(hi, lo, X[16], -MAD_F(0x09bd7ca0)); |
| |
| t2 = MAD_F_MLZ(hi, lo); |
| |
| MAD_F_MLA(hi, lo, X[0], MAD_F(0x04cfb0e2)); |
| MAD_F_MLA(hi, lo, X[2], MAD_F(0x0ffc19fd)); |
| MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0d7e8807)); |
| MAD_F_MLA(hi, lo, X[5], MAD_F(0x03768962)); |
| MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0bcbe352)); |
| MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0e313245)); |
| MAD_F_MLA(hi, lo, X[9], MAD_F(0x07635284)); |
| MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0acf37ad)); |
| MAD_F_MLA(hi, lo, X[12], MAD_F(0x0f9ee890)); |
| MAD_F_MLA(hi, lo, X[14], MAD_F(0x0898c779)); |
| MAD_F_MLA(hi, lo, X[15], MAD_F(0x00b2aa3e)); |
| MAD_F_MLA(hi, lo, X[17], MAD_F(0x0f426cb5)); |
| |
| x[5] = MAD_F_MLZ(hi, lo); |
| x[12] = -x[5]; |
| |
| MAD_F_ML0(hi, lo, X[0], MAD_F(0x0acf37ad)); |
| MAD_F_MLA(hi, lo, X[2], -MAD_F(0x0898c779)); |
| MAD_F_MLA(hi, lo, X[3], MAD_F(0x0e313245)); |
| MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0f426cb5)); |
| MAD_F_MLA(hi, lo, X[6], -MAD_F(0x03768962)); |
| MAD_F_MLA(hi, lo, X[8], MAD_F(0x00b2aa3e)); |
| MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0ffc19fd)); |
| MAD_F_MLA(hi, lo, X[11], MAD_F(0x0f9ee890)); |
| MAD_F_MLA(hi, lo, X[12], -MAD_F(0x04cfb0e2)); |
| MAD_F_MLA(hi, lo, X[14], MAD_F(0x07635284)); |
| MAD_F_MLA(hi, lo, X[15], MAD_F(0x0d7e8807)); |
| MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0bcbe352)); |
| |
| x[0] = MAD_F_MLZ(hi, lo) + t2; |
| x[17] = -x[0]; |
| |
| MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0f9ee890)); |
| MAD_F_MLA(hi, lo, X[2], -MAD_F(0x07635284)); |
| MAD_F_MLA(hi, lo, X[3], -MAD_F(0x00b2aa3e)); |
| MAD_F_MLA(hi, lo, X[5], MAD_F(0x0bcbe352)); |
| MAD_F_MLA(hi, lo, X[6], MAD_F(0x0f426cb5)); |
| MAD_F_MLA(hi, lo, X[8], MAD_F(0x0d7e8807)); |
| MAD_F_MLA(hi, lo, X[9], MAD_F(0x0898c779)); |
| MAD_F_MLA(hi, lo, X[11], -MAD_F(0x04cfb0e2)); |
| MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0acf37ad)); |
| MAD_F_MLA(hi, lo, X[14], -MAD_F(0x0ffc19fd)); |
| MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0e313245)); |
| MAD_F_MLA(hi, lo, X[17], -MAD_F(0x03768962)); |
| |
| x[24] = x[29] = MAD_F_MLZ(hi, lo) + t2; |
| |
| MAD_F_ML0(hi, lo, X[1], -MAD_F(0x0216a2a2)); |
| MAD_F_MLA(hi, lo, X[7], -MAD_F(0x09bd7ca0)); |
| MAD_F_MLA(hi, lo, X[10], MAD_F(0x0cb19346)); |
| MAD_F_MLA(hi, lo, X[16], MAD_F(0x0fdcf549)); |
| |
| t3 = MAD_F_MLZ(hi, lo) + t7; |
| |
| MAD_F_ML0(hi, lo, X[0], MAD_F(0x00b2aa3e)); |
| MAD_F_MLA(hi, lo, X[2], MAD_F(0x03768962)); |
| MAD_F_MLA(hi, lo, X[3], -MAD_F(0x04cfb0e2)); |
| MAD_F_MLA(hi, lo, X[5], -MAD_F(0x07635284)); |
| MAD_F_MLA(hi, lo, X[6], MAD_F(0x0898c779)); |
| MAD_F_MLA(hi, lo, X[8], MAD_F(0x0acf37ad)); |
| MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0bcbe352)); |
| MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0d7e8807)); |
| MAD_F_MLA(hi, lo, X[12], MAD_F(0x0e313245)); |
| MAD_F_MLA(hi, lo, X[14], MAD_F(0x0f426cb5)); |
| MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0f9ee890)); |
| MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0ffc19fd)); |
| |
| x[8] = MAD_F_MLZ(hi, lo) + t3; |
| x[9] = -x[8]; |
| |
| MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0e313245)); |
| MAD_F_MLA(hi, lo, X[2], MAD_F(0x0bcbe352)); |
| MAD_F_MLA(hi, lo, X[3], MAD_F(0x0f9ee890)); |
| MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0898c779)); |
| MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0ffc19fd)); |
| MAD_F_MLA(hi, lo, X[8], MAD_F(0x04cfb0e2)); |
| MAD_F_MLA(hi, lo, X[9], MAD_F(0x0f426cb5)); |
| MAD_F_MLA(hi, lo, X[11], -MAD_F(0x00b2aa3e)); |
| MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0d7e8807)); |
| MAD_F_MLA(hi, lo, X[14], -MAD_F(0x03768962)); |
| MAD_F_MLA(hi, lo, X[15], MAD_F(0x0acf37ad)); |
| MAD_F_MLA(hi, lo, X[17], MAD_F(0x07635284)); |
| |
| x[21] = x[32] = MAD_F_MLZ(hi, lo) + t3; |
| |
| MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0d7e8807)); |
| MAD_F_MLA(hi, lo, X[2], MAD_F(0x0f426cb5)); |
| MAD_F_MLA(hi, lo, X[3], MAD_F(0x0acf37ad)); |
| MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0ffc19fd)); |
| MAD_F_MLA(hi, lo, X[6], -MAD_F(0x07635284)); |
| MAD_F_MLA(hi, lo, X[8], MAD_F(0x0f9ee890)); |
| MAD_F_MLA(hi, lo, X[9], MAD_F(0x03768962)); |
| MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0e313245)); |
| MAD_F_MLA(hi, lo, X[12], MAD_F(0x00b2aa3e)); |
| MAD_F_MLA(hi, lo, X[14], MAD_F(0x0bcbe352)); |
| MAD_F_MLA(hi, lo, X[15], -MAD_F(0x04cfb0e2)); |
| MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0898c779)); |
| |
| x[20] = x[33] = MAD_F_MLZ(hi, lo) - t3; |
| |
| MAD_F_ML0(hi, lo, t14, -MAD_F(0x0ec835e8)); |
| MAD_F_MLA(hi, lo, t15, MAD_F(0x061f78aa)); |
| |
| t4 = MAD_F_MLZ(hi, lo) - t7; |
| |
| MAD_F_ML0(hi, lo, t12, MAD_F(0x061f78aa)); |
| MAD_F_MLA(hi, lo, t13, MAD_F(0x0ec835e8)); |
| |
| x[4] = MAD_F_MLZ(hi, lo) + t4; |
| x[13] = -x[4]; |
| |
| MAD_F_ML0(hi, lo, t8, MAD_F(0x09bd7ca0)); |
| MAD_F_MLA(hi, lo, t9, -MAD_F(0x0216a2a2)); |
| MAD_F_MLA(hi, lo, t10, MAD_F(0x0fdcf549)); |
| MAD_F_MLA(hi, lo, t11, -MAD_F(0x0cb19346)); |
| |
| x[1] = MAD_F_MLZ(hi, lo) + t4; |
| x[16] = -x[1]; |
| |
| MAD_F_ML0(hi, lo, t8, -MAD_F(0x0fdcf549)); |
| MAD_F_MLA(hi, lo, t9, -MAD_F(0x0cb19346)); |
| MAD_F_MLA(hi, lo, t10, -MAD_F(0x09bd7ca0)); |
| MAD_F_MLA(hi, lo, t11, -MAD_F(0x0216a2a2)); |
| |
| x[25] = x[28] = MAD_F_MLZ(hi, lo) + t4; |
| |
| MAD_F_ML0(hi, lo, X[1], -MAD_F(0x0fdcf549)); |
| MAD_F_MLA(hi, lo, X[7], -MAD_F(0x0cb19346)); |
| MAD_F_MLA(hi, lo, X[10], -MAD_F(0x09bd7ca0)); |
| MAD_F_MLA(hi, lo, X[16], -MAD_F(0x0216a2a2)); |
| |
| t5 = MAD_F_MLZ(hi, lo) - t6; |
| |
| MAD_F_ML0(hi, lo, X[0], MAD_F(0x0898c779)); |
| MAD_F_MLA(hi, lo, X[2], MAD_F(0x04cfb0e2)); |
| MAD_F_MLA(hi, lo, X[3], MAD_F(0x0bcbe352)); |
| MAD_F_MLA(hi, lo, X[5], MAD_F(0x00b2aa3e)); |
| MAD_F_MLA(hi, lo, X[6], MAD_F(0x0e313245)); |
| MAD_F_MLA(hi, lo, X[8], -MAD_F(0x03768962)); |
| MAD_F_MLA(hi, lo, X[9], MAD_F(0x0f9ee890)); |
| MAD_F_MLA(hi, lo, X[11], -MAD_F(0x07635284)); |
| MAD_F_MLA(hi, lo, X[12], MAD_F(0x0ffc19fd)); |
| MAD_F_MLA(hi, lo, X[14], -MAD_F(0x0acf37ad)); |
| MAD_F_MLA(hi, lo, X[15], MAD_F(0x0f426cb5)); |
| MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0d7e8807)); |
| |
| x[2] = MAD_F_MLZ(hi, lo) + t5; |
| x[15] = -x[2]; |
| |
| MAD_F_ML0(hi, lo, X[0], MAD_F(0x07635284)); |
| MAD_F_MLA(hi, lo, X[2], MAD_F(0x0acf37ad)); |
| MAD_F_MLA(hi, lo, X[3], MAD_F(0x03768962)); |
| MAD_F_MLA(hi, lo, X[5], MAD_F(0x0d7e8807)); |
| MAD_F_MLA(hi, lo, X[6], -MAD_F(0x00b2aa3e)); |
| MAD_F_MLA(hi, lo, X[8], MAD_F(0x0f426cb5)); |
| MAD_F_MLA(hi, lo, X[9], -MAD_F(0x04cfb0e2)); |
| MAD_F_MLA(hi, lo, X[11], MAD_F(0x0ffc19fd)); |
| MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0898c779)); |
| MAD_F_MLA(hi, lo, X[14], MAD_F(0x0f9ee890)); |
| MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0bcbe352)); |
| MAD_F_MLA(hi, lo, X[17], MAD_F(0x0e313245)); |
| |
| x[3] = MAD_F_MLZ(hi, lo) + t5; |
| x[14] = -x[3]; |
| |
| MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0ffc19fd)); |
| MAD_F_MLA(hi, lo, X[2], -MAD_F(0x0f9ee890)); |
| MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0f426cb5)); |
| MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0e313245)); |
| MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0d7e8807)); |
| MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0bcbe352)); |
| MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0acf37ad)); |
| MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0898c779)); |
| MAD_F_MLA(hi, lo, X[12], -MAD_F(0x07635284)); |
| MAD_F_MLA(hi, lo, X[14], -MAD_F(0x04cfb0e2)); |
| MAD_F_MLA(hi, lo, X[15], -MAD_F(0x03768962)); |
| MAD_F_MLA(hi, lo, X[17], -MAD_F(0x00b2aa3e)); |
| |
| x[26] = x[27] = MAD_F_MLZ(hi, lo) + t5; |
| } |
| # endif |
| |
| /* |
| * NAME: III_imdct_l() |
| * DESCRIPTION: perform IMDCT and windowing for long blocks |
| */ |
| static |
| void III_imdct_l(mad_fixed_t const X[18], mad_fixed_t z[36], |
| unsigned int block_type) |
| { |
| unsigned int i; |
| |
| /* IMDCT */ |
| |
| imdct36(X, z); |
| |
| /* windowing */ |
| |
| switch (block_type) { |
| case 0: /* normal window */ |
| # if defined(ASO_INTERLEAVE1) |
| { |
| register mad_fixed_t tmp1, tmp2; |
| |
| tmp1 = window_l[0]; |
| tmp2 = window_l[1]; |
| |
| for (i = 0; i < 34; i += 2) { |
| z[i + 0] = mad_f_mul(z[i + 0], tmp1); |
| tmp1 = window_l[i + 2]; |
| z[i + 1] = mad_f_mul(z[i + 1], tmp2); |
| tmp2 = window_l[i + 3]; |
| } |
| |
| z[34] = mad_f_mul(z[34], tmp1); |
| z[35] = mad_f_mul(z[35], tmp2); |
| } |
| # elif defined(ASO_INTERLEAVE2) |
| { |
| register mad_fixed_t tmp1, tmp2; |
| |
| tmp1 = z[0]; |
| tmp2 = window_l[0]; |
| |
| for (i = 0; i < 35; ++i) { |
| z[i] = mad_f_mul(tmp1, tmp2); |
| tmp1 = z[i + 1]; |
| tmp2 = window_l[i + 1]; |
| } |
| |
| z[35] = mad_f_mul(tmp1, tmp2); |
| } |
| # elif 1 |
| for (i = 0; i < 36; i += 4) { |
| z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]); |
| z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]); |
| z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]); |
| z[i + 3] = mad_f_mul(z[i + 3], window_l[i + 3]); |
| } |
| # else |
| for (i = 0; i < 36; ++i) { |
| z[i] = mad_f_mul(z[i], window_l[i]); |
| } |
| # endif |
| break; |
| |
| case 1: /* start block */ |
| for (i = 0; i < 18; i += 3) { |
| z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]); |
| z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]); |
| z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]); |
| } |
| /* (i = 18; i < 24; ++i) z[i] unchanged */ |
| for (i = 24; i < 30; ++i) { |
| z[i] = mad_f_mul(z[i], window_s[i - 18]); |
| } |
| for (i = 30; i < 36; ++i) { |
| z[i] = 0; |
| } |
| break; |
| |
| case 3: /* stop block */ |
| for (i = 0; i < 6; ++i) { |
| z[i] = 0; |
| } |
| for (i = 6; i < 12; ++i) { |
| z[i] = mad_f_mul(z[i], window_s[i - 6]); |
| } |
| /* (i = 12; i < 18; ++i) z[i] unchanged */ |
| for (i = 18; i < 36; i += 3) { |
| z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]); |
| z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]); |
| z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]); |
| } |
| break; |
| } |
| } |
| # endif /* ASO_IMDCT */ |
| |
| /* |
| * NAME: III_imdct_s() |
| * DESCRIPTION: perform IMDCT and windowing for short blocks |
| */ |
| static |
| void III_imdct_s(mad_fixed_t const X[18], mad_fixed_t z[36]) |
| { |
| mad_fixed_t y[36], *yptr; |
| mad_fixed_t const *wptr; |
| int w, i; |
| register mad_fixed64hi_t hi; |
| register mad_fixed64lo_t lo; |
| |
| /* IMDCT */ |
| |
| yptr = &y[0]; |
| |
| for (w = 0; w < 3; ++w) { |
| register mad_fixed_t const(*s)[6]; |
| |
| s = imdct_s; |
| |
| for (i = 0; i < 3; ++i) { |
| MAD_F_ML0(hi, lo, X[0], (*s)[0]); |
| MAD_F_MLA(hi, lo, X[1], (*s)[1]); |
| MAD_F_MLA(hi, lo, X[2], (*s)[2]); |
| MAD_F_MLA(hi, lo, X[3], (*s)[3]); |
| MAD_F_MLA(hi, lo, X[4], (*s)[4]); |
| MAD_F_MLA(hi, lo, X[5], (*s)[5]); |
| |
| yptr[i + 0] = MAD_F_MLZ(hi, lo); |
| yptr[5 - i] = -yptr[i + 0]; |
| |
| ++s; |
| |
| MAD_F_ML0(hi, lo, X[0], (*s)[0]); |
| MAD_F_MLA(hi, lo, X[1], (*s)[1]); |
| MAD_F_MLA(hi, lo, X[2], (*s)[2]); |
| MAD_F_MLA(hi, lo, X[3], (*s)[3]); |
| MAD_F_MLA(hi, lo, X[4], (*s)[4]); |
| MAD_F_MLA(hi, lo, X[5], (*s)[5]); |
| |
| yptr[ i + 6] = MAD_F_MLZ(hi, lo); |
| yptr[11 - i] = yptr[i + 6]; |
| |
| ++s; |
| } |
| |
| yptr += 12; |
| X += 6; |
| } |
| |
| /* windowing, overlapping and concatenation */ |
| |
| yptr = &y[0]; |
| wptr = &window_s[0]; |
| |
| for (i = 0; i < 6; ++i) { |
| z[i + 0] = 0; |
| z[i + 6] = mad_f_mul(yptr[ 0 + 0], wptr[0]); |
| |
| MAD_F_ML0(hi, lo, yptr[ 0 + 6], wptr[6]); |
| MAD_F_MLA(hi, lo, yptr[12 + 0], wptr[0]); |
| |
| z[i + 12] = MAD_F_MLZ(hi, lo); |
| |
| MAD_F_ML0(hi, lo, yptr[12 + 6], wptr[6]); |
| MAD_F_MLA(hi, lo, yptr[24 + 0], wptr[0]); |
| |
| z[i + 18] = MAD_F_MLZ(hi, lo); |
| |
| z[i + 24] = mad_f_mul(yptr[24 + 6], wptr[6]); |
| z[i + 30] = 0; |
| |
| ++yptr; |
| ++wptr; |
| } |
| } |
| |
| /* |
| * NAME: III_overlap() |
| * DESCRIPTION: perform overlap-add of windowed IMDCT outputs |
| */ |
| static |
| void III_overlap(mad_fixed_t const output[36], mad_fixed_t overlap[18], |
| mad_fixed_t sample[18][32], unsigned int sb) |
| { |
| unsigned int i; |
| |
| # if defined(ASO_INTERLEAVE2) |
| { |
| register mad_fixed_t tmp1, tmp2; |
| |
| tmp1 = overlap[0]; |
| tmp2 = overlap[1]; |
| |
| for (i = 0; i < 16; i += 2) { |
| sample[i + 0][sb] = output[i + 0 + 0] + tmp1; |
| overlap[i + 0] = output[i + 0 + 18]; |
| tmp1 = overlap[i + 2]; |
| |
| sample[i + 1][sb] = output[i + 1 + 0] + tmp2; |
| overlap[i + 1] = output[i + 1 + 18]; |
| tmp2 = overlap[i + 3]; |
| } |
| |
| sample[16][sb] = output[16 + 0] + tmp1; |
| overlap[16] = output[16 + 18]; |
| sample[17][sb] = output[17 + 0] + tmp2; |
| overlap[17] = output[17 + 18]; |
| } |
| # elif 0 |
| for (i = 0; i < 18; i += 2) { |
| sample[i + 0][sb] = output[i + 0 + 0] + overlap[i + 0]; |
| overlap[i + 0] = output[i + 0 + 18]; |
| |
| sample[i + 1][sb] = output[i + 1 + 0] + overlap[i + 1]; |
| overlap[i + 1] = output[i + 1 + 18]; |
| } |
| # else |
| for (i = 0; i < 18; ++i) { |
| sample[i][sb] = output[i + 0] + overlap[i]; |
| overlap[i] = output[i + 18]; |
| } |
| # endif |
| } |
| |
| /* |
| * NAME: III_overlap_z() |
| * DESCRIPTION: perform "overlap-add" of zero IMDCT outputs |
| */ |
| static inline |
| void III_overlap_z(mad_fixed_t overlap[18], |
| mad_fixed_t sample[18][32], unsigned int sb) |
| { |
| unsigned int i; |
| |
| # if defined(ASO_INTERLEAVE2) |
| { |
| register mad_fixed_t tmp1, tmp2; |
| |
| tmp1 = overlap[0]; |
| tmp2 = overlap[1]; |
| |
| for (i = 0; i < 16; i += 2) { |
| sample[i + 0][sb] = tmp1; |
| overlap[i + 0] = 0; |
| tmp1 = overlap[i + 2]; |
| |
| sample[i + 1][sb] = tmp2; |
| overlap[i + 1] = 0; |
| tmp2 = overlap[i + 3]; |
| } |
| |
| sample[16][sb] = tmp1; |
| overlap[16] = 0; |
| sample[17][sb] = tmp2; |
| overlap[17] = 0; |
| } |
| # else |
| for (i = 0; i < 18; ++i) { |
| sample[i][sb] = overlap[i]; |
| overlap[i] = 0; |
| } |
| # endif |
| } |
| |
| /* |
| * NAME: III_freqinver() |
| * DESCRIPTION: perform subband frequency inversion for odd sample lines |
| */ |
| static |
| void III_freqinver(mad_fixed_t sample[18][32], unsigned int sb) |
| { |
| unsigned int i; |
| |
| # if 1 || defined(ASO_INTERLEAVE1) || defined(ASO_INTERLEAVE2) |
| { |
| register mad_fixed_t tmp1, tmp2; |
| |
| tmp1 = sample[1][sb]; |
| tmp2 = sample[3][sb]; |
| |
| for (i = 1; i < 13; i += 4) { |
| sample[i + 0][sb] = -tmp1; |
| tmp1 = sample[i + 4][sb]; |
| sample[i + 2][sb] = -tmp2; |
| tmp2 = sample[i + 6][sb]; |
| } |
| |
| sample[13][sb] = -tmp1; |
| tmp1 = sample[17][sb]; |
| sample[15][sb] = -tmp2; |
| sample[17][sb] = -tmp1; |
| } |
| # else |
| for (i = 1; i < 18; i += 2) { |
| sample[i][sb] = -sample[i][sb]; |
| } |
| # endif |
| } |
| |
| /* |
| * NAME: III_decode() |
| * DESCRIPTION: decode frame main_data |
| */ |
| static |
| enum mad_error III_decode(struct mad_bitptr *ptr, struct mad_frame *frame, |
| struct sideinfo *si, unsigned int nch) |
| { |
| struct mad_header *header = &frame->header; |
| unsigned int sfreqi, ngr, gr; |
| |
| { |
| unsigned int sfreq; |
| |
| sfreq = header->samplerate; |
| if (header->flags & MAD_FLAG_MPEG_2_5_EXT) { |
| sfreq *= 2; |
| } |
| |
| /* 48000 => 0, 44100 => 1, 32000 => 2, |
| 24000 => 3, 22050 => 4, 16000 => 5 */ |
| sfreqi = ((sfreq >> 7) & 0x000f) + |
| ((sfreq >> 15) & 0x0001) - 8; |
| |
| if (header->flags & MAD_FLAG_MPEG_2_5_EXT) { |
| sfreqi += 3; |
| } |
| } |
| |
| /* scalefactors, Huffman decoding, requantization */ |
| |
| ngr = (header->flags & MAD_FLAG_LSF_EXT) ? 1 : 2; |
| |
| for (gr = 0; gr < ngr; ++gr) { |
| struct granule *granule = &si->gr[gr]; |
| unsigned char const *sfbwidth[2]; |
| mad_fixed_t xr[2][576]; |
| unsigned int ch; |
| enum mad_error error; |
| |
| for (ch = 0; ch < nch; ++ch) { |
| struct channel *channel = &granule->ch[ch]; |
| unsigned int part2_length; |
| |
| sfbwidth[ch] = sfbwidth_table[sfreqi].l; |
| if (channel->block_type == 2) { |
| sfbwidth[ch] = (channel->flags & mixed_block_flag) ? |
| sfbwidth_table[sfreqi].m : sfbwidth_table[sfreqi].s; |
| } |
| |
| if (header->flags & MAD_FLAG_LSF_EXT) { |
| part2_length = III_scalefactors_lsf(ptr, channel, |
| ch == 0 ? 0 : &si->gr[1].ch[1], |
| header->mode_extension); |
| } else { |
| part2_length = III_scalefactors(ptr, channel, &si->gr[0].ch[ch], |
| gr == 0 ? 0 : si->scfsi[ch]); |
| } |
| |
| error = III_huffdecode(ptr, xr[ch], channel, sfbwidth[ch], part2_length); |
| if (error) { |
| return error; |
| } |
| } |
| |
| /* joint stereo processing */ |
| |
| if (header->mode == MAD_MODE_JOINT_STEREO && header->mode_extension) { |
| error = III_stereo(xr, granule, header, sfbwidth[0]); |
| if (error) { |
| return error; |
| } |
| } |
| |
| /* reordering, alias reduction, IMDCT, overlap-add, frequency inversion */ |
| |
| for (ch = 0; ch < nch; ++ch) { |
| struct channel const *channel = &granule->ch[ch]; |
| mad_fixed_t (*sample)[32] = &frame->sbsample[ch][18 * gr]; |
| unsigned int sb, l, i, sblimit; |
| mad_fixed_t output[36]; |
| |
| if (channel->block_type == 2) { |
| III_reorder(xr[ch], channel, sfbwidth[ch]); |
| |
| # if !defined(OPT_STRICT) |
| /* |
| * According to ISO/IEC 11172-3, "Alias reduction is not applied for |
| * granules with block_type == 2 (short block)." However, other |
| * sources suggest alias reduction should indeed be performed on the |
| * lower two subbands of mixed blocks. Most other implementations do |
| * this, so by default we will too. |
| */ |
| if (channel->flags & mixed_block_flag) { |
| III_aliasreduce(xr[ch], 36); |
| } |
| # endif |
| } else { |
| III_aliasreduce(xr[ch], 576); |
| } |
| |
| l = 0; |
| |
| /* subbands 0-1 */ |
| |
| if (channel->block_type != 2 || (channel->flags & mixed_block_flag)) { |
| unsigned int block_type; |
| |
| block_type = channel->block_type; |
| if (channel->flags & mixed_block_flag) { |
| block_type = 0; |
| } |
| |
| /* long blocks */ |
| for (sb = 0; sb < 2; ++sb, l += 18) { |
| III_imdct_l(&xr[ch][l], output, block_type); |
| III_overlap(output, (*frame->overlap)[ch][sb], sample, sb); |
| } |
| } else { |
| /* short blocks */ |
| for (sb = 0; sb < 2; ++sb, l += 18) { |
| III_imdct_s(&xr[ch][l], output); |
| III_overlap(output, (*frame->overlap)[ch][sb], sample, sb); |
| } |
| } |
| |
| III_freqinver(sample, 1); |
| |
| /* (nonzero) subbands 2-31 */ |
| |
| i = 576; |
| while (i > 36 && xr[ch][i - 1] == 0) { |
| --i; |
| } |
| |
| sblimit = 32 - (576 - i) / 18; |
| |
| if (channel->block_type != 2) { |
| /* long blocks */ |
| for (sb = 2; sb < sblimit; ++sb, l += 18) { |
| III_imdct_l(&xr[ch][l], output, channel->block_type); |
| III_overlap(output, (*frame->overlap)[ch][sb], sample, sb); |
| |
| if (sb & 1) { |
| III_freqinver(sample, sb); |
| } |
| } |
| } else { |
| /* short blocks */ |
| for (sb = 2; sb < sblimit; ++sb, l += 18) { |
| III_imdct_s(&xr[ch][l], output); |
| III_overlap(output, (*frame->overlap)[ch][sb], sample, sb); |
| |
| if (sb & 1) { |
| III_freqinver(sample, sb); |
| } |
| } |
| } |
| |
| /* remaining (zero) subbands */ |
| |
| for (sb = sblimit; sb < 32; ++sb) { |
| III_overlap_z((*frame->overlap)[ch][sb], sample, sb); |
| |
| if (sb & 1) { |
| III_freqinver(sample, sb); |
| } |
| } |
| } |
| } |
| |
| return MAD_ERROR_NONE; |
| } |
| |
| /* |
| * NAME: layer->III() |
| * DESCRIPTION: decode a single Layer III frame |
| */ |
| |
| int mad_layer_III(struct mad_stream *stream, struct mad_frame *frame) |
| { |
| struct mad_header *header = &frame->header; |
| unsigned int nch, priv_bitlen, next_md_begin = 0; |
| unsigned int si_len, data_bitlen, md_len; |
| unsigned int frame_space, frame_used, frame_free; |
| struct mad_bitptr ptr; |
| struct sideinfo si; |
| enum mad_error error; |
| int result = 0; |
| |
| /* allocate Layer III dynamic structures */ |
| |
| if (stream->main_data == 0) { |
| stream->main_data = malloc(MAD_BUFFER_MDLEN); |
| if (stream->main_data == 0) { |
| stream->error = MAD_ERROR_NOMEM; |
| return -1; |
| } |
| } |
| |
| if (frame->overlap == 0) { |
| frame->overlap = calloc(2 * 32 * 18, sizeof(mad_fixed_t)); |
| if (frame->overlap == 0) { |
| stream->error = MAD_ERROR_NOMEM; |
| return -1; |
| } |
| } |
| |
| nch = MAD_NCHANNELS(header); |
| si_len = (header->flags & MAD_FLAG_LSF_EXT) ? |
| (nch == 1 ? 9 : 17) : (nch == 1 ? 17 : 32); |
| |
| /* check frame sanity */ |
| |
| if (stream->next_frame - mad_bit_nextbyte(&stream->ptr) < |
| (signed int) si_len) { |
| stream->error = MAD_ERROR_BADFRAMELEN; |
| stream->md_len = 0; |
| return -1; |
| } |
| |
| /* check CRC word */ |
| |
| if (header->flags & MAD_FLAG_PROTECTION) { |
| header->crc_check = |
| mad_bit_crc(stream->ptr, si_len * CHAR_BIT, header->crc_check); |
| |
| if (header->crc_check != header->crc_target && |
| !(frame->options & MAD_OPTION_IGNORECRC)) { |
| stream->error = MAD_ERROR_BADCRC; |
| result = -1; |
| } |
| } |
| |
| /* decode frame side information */ |
| |
| error = III_sideinfo(&stream->ptr, nch, header->flags & MAD_FLAG_LSF_EXT, |
| &si, &data_bitlen, &priv_bitlen); |
| if (error && result == 0) { |
| stream->error = error; |
| result = -1; |
| } |
| |
| header->flags |= priv_bitlen; |
| header->private_bits |= si.private_bits; |
| |
| /* find main_data of next frame */ |
| |
| { |
| struct mad_bitptr peek; |
| unsigned long header; |
| |
| mad_bit_init(&peek, stream->next_frame); |
| |
| header = mad_bit_read(&peek, 32); |
| if ((header & 0xffe60000L) /* syncword | layer */ == 0xffe20000L) { |
| if (!(header & 0x00010000L)) { /* protection_bit */ |
| mad_bit_skip(&peek, 16); /* crc_check */ |
| } |
| |
| next_md_begin = |
| mad_bit_read(&peek, (header & 0x00080000L) /* ID */ ? 9 : 8); |
| } |
| |
| mad_bit_finish(&peek); |
| } |
| |
| /* find main_data of this frame */ |
| |
| frame_space = stream->next_frame - mad_bit_nextbyte(&stream->ptr); |
| |
| if (next_md_begin > si.main_data_begin + frame_space) { |
| next_md_begin = 0; |
| } |
| |
| md_len = si.main_data_begin + frame_space - next_md_begin; |
| |
| frame_used = 0; |
| |
| if (si.main_data_begin == 0) { |
| ptr = stream->ptr; |
| stream->md_len = 0; |
| |
| frame_used = md_len; |
| } else { |
| if (si.main_data_begin > stream->md_len) { |
| if (result == 0) { |
| stream->error = MAD_ERROR_BADDATAPTR; |
| result = -1; |
| } |
| } else { |
| mad_bit_init(&ptr, |
| *stream->main_data + stream->md_len - si.main_data_begin); |
| |
| if (md_len > si.main_data_begin) { |
| //assert(stream->md_len + md_len - |
| // si.main_data_begin <= MAD_BUFFER_MDLEN); |
| if (!(stream->md_len + md_len-si.main_data_begin <= MAD_BUFFER_MDLEN)) { |
| stream->error = MAD_ERROR_BADPART3LEN; |
| return -1; |
| } |
| memcpy(*stream->main_data + stream->md_len, |
| mad_bit_nextbyte(&stream->ptr), |
| frame_used = md_len - si.main_data_begin); |
| stream->md_len += frame_used; |
| } |
| } |
| } |
| |
| frame_free = frame_space - frame_used; |
| |
| /* decode main_data */ |
| |
| if (result == 0) { |
| error = III_decode(&ptr, frame, &si, nch); |
| if (error) { |
| stream->error = error; |
| result = -1; |
| } |
| |
| /* designate ancillary bits */ |
| |
| stream->anc_ptr = ptr; |
| stream->anc_bitlen = md_len * CHAR_BIT - data_bitlen; |
| } |
| |
| # if 0 && defined(DEBUG) |
| fprintf(stderr, |
| "main_data_begin:%u, md_len:%u, frame_free:%u, " |
| "data_bitlen:%u, anc_bitlen: %u\n", |
| si.main_data_begin, md_len, frame_free, |
| data_bitlen, stream->anc_bitlen); |
| # endif |
| |
| /* preload main_data buffer with up to 511 bytes for next frame(s) */ |
| |
| if (frame_free >= next_md_begin) { |
| memcpy(*stream->main_data, |
| stream->next_frame - next_md_begin, next_md_begin); |
| stream->md_len = next_md_begin; |
| } else { |
| if (md_len < si.main_data_begin) { |
| unsigned int extra; |
| |
| extra = si.main_data_begin - md_len; |
| if (extra + frame_free > next_md_begin) { |
| extra = next_md_begin - frame_free; |
| } |
| |
| if (extra < stream->md_len) { |
| memmove(*stream->main_data, |
| *stream->main_data + stream->md_len - extra, extra); |
| stream->md_len = extra; |
| } |
| } else { |
| stream->md_len = 0; |
| } |
| |
| memcpy(*stream->main_data + stream->md_len, |
| stream->next_frame - frame_free, frame_free); |
| stream->md_len += frame_free; |
| } |
| |
| return result; |
| } |