| /* |
| ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding |
| ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com |
| ** |
| ** This program is free software; you can redistribute it and/or modify |
| ** it under the terms of the GNU General Public License as published by |
| ** the Free Software Foundation; either version 2 of the License, or |
| ** (at your option) any later version. |
| ** |
| ** This program is distributed in the hope that it will be useful, |
| ** but WITHOUT ANY WARRANTY; without even the implied warranty of |
| ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| ** GNU General Public License for more details. |
| ** |
| ** You should have received a copy of the GNU General Public License |
| ** along with this program; if not, write to the Free Software |
| ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| ** |
| ** Any non-GPL usage of this software or parts of this software is strictly |
| ** forbidden. |
| ** |
| ** The "appropriate copyright message" mentioned in section 2c of the GPLv2 |
| ** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" |
| ** |
| ** Commercial non-GPL licensing of this software is possible. |
| ** For more info contact Nero AG through Mpeg4AAClicense@nero.com. |
| ** |
| ** $Id: cfft.c,v 1.35 2007/11/01 12:33:29 menno Exp $ |
| **/ |
| |
| /* |
| * Algorithmically based on Fortran-77 FFTPACK |
| * by Paul N. Swarztrauber(Version 4, 1985). |
| * |
| * Does even sized fft only |
| */ |
| |
| /* isign is +1 for backward and -1 for forward transforms */ |
| #include <stdlib.h> |
| #include "common.h" |
| #include "structs.h" |
| |
| |
| #include "cfft.h" |
| #include "cfft_tab.h" |
| |
| |
| /* static function declarations */ |
| static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, |
| complex_t *ch, const complex_t *wa); |
| static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, |
| complex_t *ch, const complex_t *wa); |
| static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc, |
| complex_t *ch, const complex_t *wa1, const complex_t *wa2, const int8_t isign); |
| static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, |
| const complex_t *wa1, const complex_t *wa2, const complex_t *wa3); |
| static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, |
| const complex_t *wa1, const complex_t *wa2, const complex_t *wa3); |
| static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch, |
| const complex_t *wa1, const complex_t *wa2, const complex_t *wa3, |
| const complex_t *wa4, const int8_t isign); |
| //INLINE void cfftf1(uint16_t n, complex_t *c, complex_t *ch, |
| //const uint16_t *ifac, const complex_t *wa, const int8_t isign); |
| static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac); |
| |
| |
| /*---------------------------------------------------------------------- |
| passf2, passf3, passf4, passf5. Complex FFT passes fwd and bwd. |
| ----------------------------------------------------------------------*/ |
| |
| static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, |
| complex_t *ch, const complex_t *wa) |
| { |
| uint16_t i, k, ah, ac; |
| |
| if (ido == 1) { |
| for (k = 0; k < l1; k++) { |
| ah = 2 * k; |
| ac = 4 * k; |
| |
| RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac + 1]); |
| RE(ch[ah + l1]) = RE(cc[ac]) - RE(cc[ac + 1]); |
| IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac + 1]); |
| IM(ch[ah + l1]) = IM(cc[ac]) - IM(cc[ac + 1]); |
| } |
| } else { |
| for (k = 0; k < l1; k++) { |
| ah = k * ido; |
| ac = 2 * k * ido; |
| |
| for (i = 0; i < ido; i++) { |
| complex_t t2; |
| |
| RE(ch[ah + i]) = RE(cc[ac + i]) + RE(cc[ac + i + ido]); |
| RE(t2) = RE(cc[ac + i]) - RE(cc[ac + i + ido]); |
| |
| IM(ch[ah + i]) = IM(cc[ac + i]) + IM(cc[ac + i + ido]); |
| IM(t2) = IM(cc[ac + i]) - IM(cc[ac + i + ido]); |
| |
| #if 1 |
| ComplexMult(&IM(ch[ah + i + l1 * ido]), &RE(ch[ah + i + l1 * ido]), |
| IM(t2), RE(t2), RE(wa[i]), IM(wa[i])); |
| #else |
| ComplexMult(&RE(ch[ah + i + l1 * ido]), &IM(ch[ah + i + l1 * ido]), |
| RE(t2), IM(t2), RE(wa[i]), IM(wa[i])); |
| #endif |
| } |
| } |
| } |
| } |
| |
| static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, |
| complex_t *ch, const complex_t *wa) |
| { |
| uint16_t i, k, ah, ac; |
| |
| if (ido == 1) { |
| for (k = 0; k < l1; k++) { |
| ah = 2 * k; |
| ac = 4 * k; |
| |
| RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac + 1]); |
| RE(ch[ah + l1]) = RE(cc[ac]) - RE(cc[ac + 1]); |
| IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac + 1]); |
| IM(ch[ah + l1]) = IM(cc[ac]) - IM(cc[ac + 1]); |
| } |
| } else { |
| for (k = 0; k < l1; k++) { |
| ah = k * ido; |
| ac = 2 * k * ido; |
| |
| for (i = 0; i < ido; i++) { |
| complex_t t2; |
| |
| RE(ch[ah + i]) = RE(cc[ac + i]) + RE(cc[ac + i + ido]); |
| RE(t2) = RE(cc[ac + i]) - RE(cc[ac + i + ido]); |
| |
| IM(ch[ah + i]) = IM(cc[ac + i]) + IM(cc[ac + i + ido]); |
| IM(t2) = IM(cc[ac + i]) - IM(cc[ac + i + ido]); |
| |
| #if 1 |
| ComplexMult(&RE(ch[ah + i + l1 * ido]), &IM(ch[ah + i + l1 * ido]), |
| RE(t2), IM(t2), RE(wa[i]), IM(wa[i])); |
| #else |
| ComplexMult(&IM(ch[ah + i + l1 * ido]), &RE(ch[ah + i + l1 * ido]), |
| IM(t2), RE(t2), RE(wa[i]), IM(wa[i])); |
| #endif |
| } |
| } |
| } |
| } |
| |
| |
| static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc, |
| complex_t *ch, const complex_t *wa1, const complex_t *wa2, |
| const int8_t isign) |
| { |
| static real_t taur = FRAC_CONST(-0.5); |
| static real_t taui = FRAC_CONST(0.866025403784439); |
| uint16_t i, k, ac, ah; |
| complex_t c2, c3, d2, d3, t2; |
| |
| if (ido == 1) { |
| if (isign == 1) { |
| for (k = 0; k < l1; k++) { |
| ac = 3 * k + 1; |
| ah = k; |
| |
| RE(t2) = RE(cc[ac]) + RE(cc[ac + 1]); |
| IM(t2) = IM(cc[ac]) + IM(cc[ac + 1]); |
| RE(c2) = RE(cc[ac - 1]) + MUL_F(RE(t2), taur); |
| IM(c2) = IM(cc[ac - 1]) + MUL_F(IM(t2), taur); |
| |
| RE(ch[ah]) = RE(cc[ac - 1]) + RE(t2); |
| IM(ch[ah]) = IM(cc[ac - 1]) + IM(t2); |
| |
| RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac + 1])), taui); |
| IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac + 1])), taui); |
| |
| RE(ch[ah + l1]) = RE(c2) - IM(c3); |
| IM(ch[ah + l1]) = IM(c2) + RE(c3); |
| RE(ch[ah + 2 * l1]) = RE(c2) + IM(c3); |
| IM(ch[ah + 2 * l1]) = IM(c2) - RE(c3); |
| } |
| } else { |
| for (k = 0; k < l1; k++) { |
| ac = 3 * k + 1; |
| ah = k; |
| |
| RE(t2) = RE(cc[ac]) + RE(cc[ac + 1]); |
| IM(t2) = IM(cc[ac]) + IM(cc[ac + 1]); |
| RE(c2) = RE(cc[ac - 1]) + MUL_F(RE(t2), taur); |
| IM(c2) = IM(cc[ac - 1]) + MUL_F(IM(t2), taur); |
| |
| RE(ch[ah]) = RE(cc[ac - 1]) + RE(t2); |
| IM(ch[ah]) = IM(cc[ac - 1]) + IM(t2); |
| |
| RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac + 1])), taui); |
| IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac + 1])), taui); |
| |
| RE(ch[ah + l1]) = RE(c2) + IM(c3); |
| IM(ch[ah + l1]) = IM(c2) - RE(c3); |
| RE(ch[ah + 2 * l1]) = RE(c2) - IM(c3); |
| IM(ch[ah + 2 * l1]) = IM(c2) + RE(c3); |
| } |
| } |
| } else { |
| if (isign == 1) { |
| for (k = 0; k < l1; k++) { |
| for (i = 0; i < ido; i++) { |
| ac = i + (3 * k + 1) * ido; |
| ah = i + k * ido; |
| |
| RE(t2) = RE(cc[ac]) + RE(cc[ac + ido]); |
| RE(c2) = RE(cc[ac - ido]) + MUL_F(RE(t2), taur); |
| IM(t2) = IM(cc[ac]) + IM(cc[ac + ido]); |
| IM(c2) = IM(cc[ac - ido]) + MUL_F(IM(t2), taur); |
| |
| RE(ch[ah]) = RE(cc[ac - ido]) + RE(t2); |
| IM(ch[ah]) = IM(cc[ac - ido]) + IM(t2); |
| |
| RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac + ido])), taui); |
| IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac + ido])), taui); |
| |
| RE(d2) = RE(c2) - IM(c3); |
| IM(d3) = IM(c2) - RE(c3); |
| RE(d3) = RE(c2) + IM(c3); |
| IM(d2) = IM(c2) + RE(c3); |
| |
| #if 1 |
| ComplexMult(&IM(ch[ah + l1 * ido]), &RE(ch[ah + l1 * ido]), |
| IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i])); |
| ComplexMult(&IM(ch[ah + 2 * l1 * ido]), &RE(ch[ah + 2 * l1 * ido]), |
| IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); |
| #else |
| ComplexMult(&RE(ch[ah + l1 * ido]), &IM(ch[ah + l1 * ido]), |
| RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i])); |
| ComplexMult(&RE(ch[ah + 2 * l1 * ido]), &IM(ch[ah + 2 * l1 * ido]), |
| RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); |
| #endif |
| } |
| } |
| } else { |
| for (k = 0; k < l1; k++) { |
| for (i = 0; i < ido; i++) { |
| ac = i + (3 * k + 1) * ido; |
| ah = i + k * ido; |
| |
| RE(t2) = RE(cc[ac]) + RE(cc[ac + ido]); |
| RE(c2) = RE(cc[ac - ido]) + MUL_F(RE(t2), taur); |
| IM(t2) = IM(cc[ac]) + IM(cc[ac + ido]); |
| IM(c2) = IM(cc[ac - ido]) + MUL_F(IM(t2), taur); |
| |
| RE(ch[ah]) = RE(cc[ac - ido]) + RE(t2); |
| IM(ch[ah]) = IM(cc[ac - ido]) + IM(t2); |
| |
| RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac + ido])), taui); |
| IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac + ido])), taui); |
| |
| RE(d2) = RE(c2) + IM(c3); |
| IM(d3) = IM(c2) + RE(c3); |
| RE(d3) = RE(c2) - IM(c3); |
| IM(d2) = IM(c2) - RE(c3); |
| |
| #if 1 |
| ComplexMult(&RE(ch[ah + l1 * ido]), &IM(ch[ah + l1 * ido]), |
| RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i])); |
| ComplexMult(&RE(ch[ah + 2 * l1 * ido]), &IM(ch[ah + 2 * l1 * ido]), |
| RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); |
| #else |
| ComplexMult(&IM(ch[ah + l1 * ido]), &RE(ch[ah + l1 * ido]), |
| IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i])); |
| ComplexMult(&IM(ch[ah + 2 * l1 * ido]), &RE(ch[ah + 2 * l1 * ido]), |
| IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); |
| #endif |
| } |
| } |
| } |
| } |
| } |
| |
| |
| static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, |
| complex_t *ch, const complex_t *wa1, const complex_t *wa2, |
| const complex_t *wa3) |
| { |
| uint16_t i, k, ac, ah; |
| |
| if (ido == 1) { |
| for (k = 0; k < l1; k++) { |
| complex_t t1, t2, t3, t4; |
| |
| ac = 4 * k; |
| ah = k; |
| |
| RE(t2) = RE(cc[ac]) + RE(cc[ac + 2]); |
| RE(t1) = RE(cc[ac]) - RE(cc[ac + 2]); |
| IM(t2) = IM(cc[ac]) + IM(cc[ac + 2]); |
| IM(t1) = IM(cc[ac]) - IM(cc[ac + 2]); |
| RE(t3) = RE(cc[ac + 1]) + RE(cc[ac + 3]); |
| IM(t4) = RE(cc[ac + 1]) - RE(cc[ac + 3]); |
| IM(t3) = IM(cc[ac + 3]) + IM(cc[ac + 1]); |
| RE(t4) = IM(cc[ac + 3]) - IM(cc[ac + 1]); |
| |
| RE(ch[ah]) = RE(t2) + RE(t3); |
| RE(ch[ah + 2 * l1]) = RE(t2) - RE(t3); |
| |
| IM(ch[ah]) = IM(t2) + IM(t3); |
| IM(ch[ah + 2 * l1]) = IM(t2) - IM(t3); |
| |
| RE(ch[ah + l1]) = RE(t1) + RE(t4); |
| RE(ch[ah + 3 * l1]) = RE(t1) - RE(t4); |
| |
| IM(ch[ah + l1]) = IM(t1) + IM(t4); |
| IM(ch[ah + 3 * l1]) = IM(t1) - IM(t4); |
| } |
| } else { |
| for (k = 0; k < l1; k++) { |
| ac = 4 * k * ido; |
| ah = k * ido; |
| |
| for (i = 0; i < ido; i++) { |
| complex_t c2, c3, c4, t1, t2, t3, t4; |
| |
| RE(t2) = RE(cc[ac + i]) + RE(cc[ac + i + 2 * ido]); |
| RE(t1) = RE(cc[ac + i]) - RE(cc[ac + i + 2 * ido]); |
| IM(t2) = IM(cc[ac + i]) + IM(cc[ac + i + 2 * ido]); |
| IM(t1) = IM(cc[ac + i]) - IM(cc[ac + i + 2 * ido]); |
| RE(t3) = RE(cc[ac + i + ido]) + RE(cc[ac + i + 3 * ido]); |
| IM(t4) = RE(cc[ac + i + ido]) - RE(cc[ac + i + 3 * ido]); |
| IM(t3) = IM(cc[ac + i + 3 * ido]) + IM(cc[ac + i + ido]); |
| RE(t4) = IM(cc[ac + i + 3 * ido]) - IM(cc[ac + i + ido]); |
| |
| RE(c2) = RE(t1) + RE(t4); |
| RE(c4) = RE(t1) - RE(t4); |
| |
| IM(c2) = IM(t1) + IM(t4); |
| IM(c4) = IM(t1) - IM(t4); |
| |
| RE(ch[ah + i]) = RE(t2) + RE(t3); |
| RE(c3) = RE(t2) - RE(t3); |
| |
| IM(ch[ah + i]) = IM(t2) + IM(t3); |
| IM(c3) = IM(t2) - IM(t3); |
| |
| #if 1 |
| ComplexMult(&IM(ch[ah + i + l1 * ido]), &RE(ch[ah + i + l1 * ido]), |
| IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i])); |
| ComplexMult(&IM(ch[ah + i + 2 * l1 * ido]), &RE(ch[ah + i + 2 * l1 * ido]), |
| IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i])); |
| ComplexMult(&IM(ch[ah + i + 3 * l1 * ido]), &RE(ch[ah + i + 3 * l1 * ido]), |
| IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i])); |
| #else |
| ComplexMult(&RE(ch[ah + i + l1 * ido]), &IM(ch[ah + i + l1 * ido]), |
| RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i])); |
| ComplexMult(&RE(ch[ah + i + 2 * l1 * ido]), &IM(ch[ah + i + 2 * l1 * ido]), |
| RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i])); |
| ComplexMult(&RE(ch[ah + i + 3 * l1 * ido]), &IM(ch[ah + i + 3 * l1 * ido]), |
| RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i])); |
| #endif |
| } |
| } |
| } |
| } |
| |
| static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, |
| complex_t *ch, const complex_t *wa1, const complex_t *wa2, |
| const complex_t *wa3) |
| { |
| uint16_t i, k, ac, ah; |
| |
| if (ido == 1) { |
| for (k = 0; k < l1; k++) { |
| complex_t t1, t2, t3, t4; |
| |
| ac = 4 * k; |
| ah = k; |
| |
| RE(t2) = RE(cc[ac]) + RE(cc[ac + 2]); |
| RE(t1) = RE(cc[ac]) - RE(cc[ac + 2]); |
| IM(t2) = IM(cc[ac]) + IM(cc[ac + 2]); |
| IM(t1) = IM(cc[ac]) - IM(cc[ac + 2]); |
| RE(t3) = RE(cc[ac + 1]) + RE(cc[ac + 3]); |
| IM(t4) = RE(cc[ac + 1]) - RE(cc[ac + 3]); |
| IM(t3) = IM(cc[ac + 3]) + IM(cc[ac + 1]); |
| RE(t4) = IM(cc[ac + 3]) - IM(cc[ac + 1]); |
| |
| RE(ch[ah]) = RE(t2) + RE(t3); |
| RE(ch[ah + 2 * l1]) = RE(t2) - RE(t3); |
| |
| IM(ch[ah]) = IM(t2) + IM(t3); |
| IM(ch[ah + 2 * l1]) = IM(t2) - IM(t3); |
| |
| RE(ch[ah + l1]) = RE(t1) - RE(t4); |
| RE(ch[ah + 3 * l1]) = RE(t1) + RE(t4); |
| |
| IM(ch[ah + l1]) = IM(t1) - IM(t4); |
| IM(ch[ah + 3 * l1]) = IM(t1) + IM(t4); |
| } |
| } else { |
| for (k = 0; k < l1; k++) { |
| ac = 4 * k * ido; |
| ah = k * ido; |
| |
| for (i = 0; i < ido; i++) { |
| complex_t c2, c3, c4, t1, t2, t3, t4; |
| |
| RE(t2) = RE(cc[ac + i]) + RE(cc[ac + i + 2 * ido]); |
| RE(t1) = RE(cc[ac + i]) - RE(cc[ac + i + 2 * ido]); |
| IM(t2) = IM(cc[ac + i]) + IM(cc[ac + i + 2 * ido]); |
| IM(t1) = IM(cc[ac + i]) - IM(cc[ac + i + 2 * ido]); |
| RE(t3) = RE(cc[ac + i + ido]) + RE(cc[ac + i + 3 * ido]); |
| IM(t4) = RE(cc[ac + i + ido]) - RE(cc[ac + i + 3 * ido]); |
| IM(t3) = IM(cc[ac + i + 3 * ido]) + IM(cc[ac + i + ido]); |
| RE(t4) = IM(cc[ac + i + 3 * ido]) - IM(cc[ac + i + ido]); |
| |
| RE(c2) = RE(t1) - RE(t4); |
| RE(c4) = RE(t1) + RE(t4); |
| |
| IM(c2) = IM(t1) - IM(t4); |
| IM(c4) = IM(t1) + IM(t4); |
| |
| RE(ch[ah + i]) = RE(t2) + RE(t3); |
| RE(c3) = RE(t2) - RE(t3); |
| |
| IM(ch[ah + i]) = IM(t2) + IM(t3); |
| IM(c3) = IM(t2) - IM(t3); |
| |
| #if 1 |
| ComplexMult(&RE(ch[ah + i + l1 * ido]), &IM(ch[ah + i + l1 * ido]), |
| RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i])); |
| ComplexMult(&RE(ch[ah + i + 2 * l1 * ido]), &IM(ch[ah + i + 2 * l1 * ido]), |
| RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i])); |
| ComplexMult(&RE(ch[ah + i + 3 * l1 * ido]), &IM(ch[ah + i + 3 * l1 * ido]), |
| RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i])); |
| #else |
| ComplexMult(&IM(ch[ah + i + l1 * ido]), &RE(ch[ah + i + l1 * ido]), |
| IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i])); |
| ComplexMult(&IM(ch[ah + i + 2 * l1 * ido]), &RE(ch[ah + i + 2 * l1 * ido]), |
| IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i])); |
| ComplexMult(&IM(ch[ah + i + 3 * l1 * ido]), &RE(ch[ah + i + 3 * l1 * ido]), |
| IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i])); |
| #endif |
| } |
| } |
| } |
| } |
| |
| static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc, |
| complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3, |
| const complex_t *wa4, const int8_t isign) |
| { |
| static real_t tr11 = FRAC_CONST(0.309016994374947); |
| static real_t ti11 = FRAC_CONST(0.951056516295154); |
| static real_t tr12 = FRAC_CONST(-0.809016994374947); |
| static real_t ti12 = FRAC_CONST(0.587785252292473); |
| uint16_t i, k, ac, ah; |
| complex_t c2, c3, c4, c5, d3, d4, d5, d2, t2, t3, t4, t5; |
| |
| if (ido == 1) { |
| if (isign == 1) { |
| for (k = 0; k < l1; k++) { |
| ac = 5 * k + 1; |
| ah = k; |
| |
| RE(t2) = RE(cc[ac]) + RE(cc[ac + 3]); |
| IM(t2) = IM(cc[ac]) + IM(cc[ac + 3]); |
| RE(t3) = RE(cc[ac + 1]) + RE(cc[ac + 2]); |
| IM(t3) = IM(cc[ac + 1]) + IM(cc[ac + 2]); |
| RE(t4) = RE(cc[ac + 1]) - RE(cc[ac + 2]); |
| IM(t4) = IM(cc[ac + 1]) - IM(cc[ac + 2]); |
| RE(t5) = RE(cc[ac]) - RE(cc[ac + 3]); |
| IM(t5) = IM(cc[ac]) - IM(cc[ac + 3]); |
| |
| RE(ch[ah]) = RE(cc[ac - 1]) + RE(t2) + RE(t3); |
| IM(ch[ah]) = IM(cc[ac - 1]) + IM(t2) + IM(t3); |
| |
| RE(c2) = RE(cc[ac - 1]) + MUL_F(RE(t2), tr11) + MUL_F(RE(t3), tr12); |
| IM(c2) = IM(cc[ac - 1]) + MUL_F(IM(t2), tr11) + MUL_F(IM(t3), tr12); |
| RE(c3) = RE(cc[ac - 1]) + MUL_F(RE(t2), tr12) + MUL_F(RE(t3), tr11); |
| IM(c3) = IM(cc[ac - 1]) + MUL_F(IM(t2), tr12) + MUL_F(IM(t3), tr11); |
| |
| ComplexMult(&RE(c5), &RE(c4), |
| ti11, ti12, RE(t5), RE(t4)); |
| ComplexMult(&IM(c5), &IM(c4), |
| ti11, ti12, IM(t5), IM(t4)); |
| |
| RE(ch[ah + l1]) = RE(c2) - IM(c5); |
| IM(ch[ah + l1]) = IM(c2) + RE(c5); |
| RE(ch[ah + 2 * l1]) = RE(c3) - IM(c4); |
| IM(ch[ah + 2 * l1]) = IM(c3) + RE(c4); |
| RE(ch[ah + 3 * l1]) = RE(c3) + IM(c4); |
| IM(ch[ah + 3 * l1]) = IM(c3) - RE(c4); |
| RE(ch[ah + 4 * l1]) = RE(c2) + IM(c5); |
| IM(ch[ah + 4 * l1]) = IM(c2) - RE(c5); |
| } |
| } else { |
| for (k = 0; k < l1; k++) { |
| ac = 5 * k + 1; |
| ah = k; |
| |
| RE(t2) = RE(cc[ac]) + RE(cc[ac + 3]); |
| IM(t2) = IM(cc[ac]) + IM(cc[ac + 3]); |
| RE(t3) = RE(cc[ac + 1]) + RE(cc[ac + 2]); |
| IM(t3) = IM(cc[ac + 1]) + IM(cc[ac + 2]); |
| RE(t4) = RE(cc[ac + 1]) - RE(cc[ac + 2]); |
| IM(t4) = IM(cc[ac + 1]) - IM(cc[ac + 2]); |
| RE(t5) = RE(cc[ac]) - RE(cc[ac + 3]); |
| IM(t5) = IM(cc[ac]) - IM(cc[ac + 3]); |
| |
| RE(ch[ah]) = RE(cc[ac - 1]) + RE(t2) + RE(t3); |
| IM(ch[ah]) = IM(cc[ac - 1]) + IM(t2) + IM(t3); |
| |
| RE(c2) = RE(cc[ac - 1]) + MUL_F(RE(t2), tr11) + MUL_F(RE(t3), tr12); |
| IM(c2) = IM(cc[ac - 1]) + MUL_F(IM(t2), tr11) + MUL_F(IM(t3), tr12); |
| RE(c3) = RE(cc[ac - 1]) + MUL_F(RE(t2), tr12) + MUL_F(RE(t3), tr11); |
| IM(c3) = IM(cc[ac - 1]) + MUL_F(IM(t2), tr12) + MUL_F(IM(t3), tr11); |
| |
| ComplexMult(&RE(c4), &RE(c5), |
| ti12, ti11, RE(t5), RE(t4)); |
| ComplexMult(&IM(c4), &IM(c5), |
| ti12, ti11, IM(t5), IM(t4)); |
| |
| RE(ch[ah + l1]) = RE(c2) + IM(c5); |
| IM(ch[ah + l1]) = IM(c2) - RE(c5); |
| RE(ch[ah + 2 * l1]) = RE(c3) + IM(c4); |
| IM(ch[ah + 2 * l1]) = IM(c3) - RE(c4); |
| RE(ch[ah + 3 * l1]) = RE(c3) - IM(c4); |
| IM(ch[ah + 3 * l1]) = IM(c3) + RE(c4); |
| RE(ch[ah + 4 * l1]) = RE(c2) - IM(c5); |
| IM(ch[ah + 4 * l1]) = IM(c2) + RE(c5); |
| } |
| } |
| } else { |
| if (isign == 1) { |
| for (k = 0; k < l1; k++) { |
| for (i = 0; i < ido; i++) { |
| ac = i + (k * 5 + 1) * ido; |
| ah = i + k * ido; |
| |
| RE(t2) = RE(cc[ac]) + RE(cc[ac + 3 * ido]); |
| IM(t2) = IM(cc[ac]) + IM(cc[ac + 3 * ido]); |
| RE(t3) = RE(cc[ac + ido]) + RE(cc[ac + 2 * ido]); |
| IM(t3) = IM(cc[ac + ido]) + IM(cc[ac + 2 * ido]); |
| RE(t4) = RE(cc[ac + ido]) - RE(cc[ac + 2 * ido]); |
| IM(t4) = IM(cc[ac + ido]) - IM(cc[ac + 2 * ido]); |
| RE(t5) = RE(cc[ac]) - RE(cc[ac + 3 * ido]); |
| IM(t5) = IM(cc[ac]) - IM(cc[ac + 3 * ido]); |
| |
| RE(ch[ah]) = RE(cc[ac - ido]) + RE(t2) + RE(t3); |
| IM(ch[ah]) = IM(cc[ac - ido]) + IM(t2) + IM(t3); |
| |
| RE(c2) = RE(cc[ac - ido]) + MUL_F(RE(t2), tr11) + MUL_F(RE(t3), tr12); |
| IM(c2) = IM(cc[ac - ido]) + MUL_F(IM(t2), tr11) + MUL_F(IM(t3), tr12); |
| RE(c3) = RE(cc[ac - ido]) + MUL_F(RE(t2), tr12) + MUL_F(RE(t3), tr11); |
| IM(c3) = IM(cc[ac - ido]) + MUL_F(IM(t2), tr12) + MUL_F(IM(t3), tr11); |
| |
| ComplexMult(&RE(c5), &RE(c4), |
| ti11, ti12, RE(t5), RE(t4)); |
| ComplexMult(&IM(c5), &IM(c4), |
| ti11, ti12, IM(t5), IM(t4)); |
| |
| IM(d2) = IM(c2) + RE(c5); |
| IM(d3) = IM(c3) + RE(c4); |
| RE(d4) = RE(c3) + IM(c4); |
| RE(d5) = RE(c2) + IM(c5); |
| RE(d2) = RE(c2) - IM(c5); |
| IM(d5) = IM(c2) - RE(c5); |
| RE(d3) = RE(c3) - IM(c4); |
| IM(d4) = IM(c3) - RE(c4); |
| |
| #if 1 |
| ComplexMult(&IM(ch[ah + l1 * ido]), &RE(ch[ah + l1 * ido]), |
| IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i])); |
| ComplexMult(&IM(ch[ah + 2 * l1 * ido]), &RE(ch[ah + 2 * l1 * ido]), |
| IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); |
| ComplexMult(&IM(ch[ah + 3 * l1 * ido]), &RE(ch[ah + 3 * l1 * ido]), |
| IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i])); |
| ComplexMult(&IM(ch[ah + 4 * l1 * ido]), &RE(ch[ah + 4 * l1 * ido]), |
| IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i])); |
| #else |
| ComplexMult(&RE(ch[ah + l1 * ido]), &IM(ch[ah + l1 * ido]), |
| RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i])); |
| ComplexMult(&RE(ch[ah + 2 * l1 * ido]), &IM(ch[ah + 2 * l1 * ido]), |
| RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); |
| ComplexMult(&RE(ch[ah + 3 * l1 * ido]), &IM(ch[ah + 3 * l1 * ido]), |
| RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i])); |
| ComplexMult(&RE(ch[ah + 4 * l1 * ido]), &IM(ch[ah + 4 * l1 * ido]), |
| RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i])); |
| #endif |
| } |
| } |
| } else { |
| for (k = 0; k < l1; k++) { |
| for (i = 0; i < ido; i++) { |
| ac = i + (k * 5 + 1) * ido; |
| ah = i + k * ido; |
| |
| RE(t2) = RE(cc[ac]) + RE(cc[ac + 3 * ido]); |
| IM(t2) = IM(cc[ac]) + IM(cc[ac + 3 * ido]); |
| RE(t3) = RE(cc[ac + ido]) + RE(cc[ac + 2 * ido]); |
| IM(t3) = IM(cc[ac + ido]) + IM(cc[ac + 2 * ido]); |
| RE(t4) = RE(cc[ac + ido]) - RE(cc[ac + 2 * ido]); |
| IM(t4) = IM(cc[ac + ido]) - IM(cc[ac + 2 * ido]); |
| RE(t5) = RE(cc[ac]) - RE(cc[ac + 3 * ido]); |
| IM(t5) = IM(cc[ac]) - IM(cc[ac + 3 * ido]); |
| |
| RE(ch[ah]) = RE(cc[ac - ido]) + RE(t2) + RE(t3); |
| IM(ch[ah]) = IM(cc[ac - ido]) + IM(t2) + IM(t3); |
| |
| RE(c2) = RE(cc[ac - ido]) + MUL_F(RE(t2), tr11) + MUL_F(RE(t3), tr12); |
| IM(c2) = IM(cc[ac - ido]) + MUL_F(IM(t2), tr11) + MUL_F(IM(t3), tr12); |
| RE(c3) = RE(cc[ac - ido]) + MUL_F(RE(t2), tr12) + MUL_F(RE(t3), tr11); |
| IM(c3) = IM(cc[ac - ido]) + MUL_F(IM(t2), tr12) + MUL_F(IM(t3), tr11); |
| |
| ComplexMult(&RE(c4), &RE(c5), |
| ti12, ti11, RE(t5), RE(t4)); |
| ComplexMult(&IM(c4), &IM(c5), |
| ti12, ti11, IM(t5), IM(t4)); |
| |
| IM(d2) = IM(c2) - RE(c5); |
| IM(d3) = IM(c3) - RE(c4); |
| RE(d4) = RE(c3) - IM(c4); |
| RE(d5) = RE(c2) - IM(c5); |
| RE(d2) = RE(c2) + IM(c5); |
| IM(d5) = IM(c2) + RE(c5); |
| RE(d3) = RE(c3) + IM(c4); |
| IM(d4) = IM(c3) + RE(c4); |
| |
| #if 1 |
| ComplexMult(&RE(ch[ah + l1 * ido]), &IM(ch[ah + l1 * ido]), |
| RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i])); |
| ComplexMult(&RE(ch[ah + 2 * l1 * ido]), &IM(ch[ah + 2 * l1 * ido]), |
| RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i])); |
| ComplexMult(&RE(ch[ah + 3 * l1 * ido]), &IM(ch[ah + 3 * l1 * ido]), |
| RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i])); |
| ComplexMult(&RE(ch[ah + 4 * l1 * ido]), &IM(ch[ah + 4 * l1 * ido]), |
| RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i])); |
| #else |
| ComplexMult(&IM(ch[ah + l1 * ido]), &RE(ch[ah + l1 * ido]), |
| IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i])); |
| ComplexMult(&IM(ch[ah + 2 * l1 * ido]), &RE(ch[ah + 2 * l1 * ido]), |
| IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i])); |
| ComplexMult(&IM(ch[ah + 3 * l1 * ido]), &RE(ch[ah + 3 * l1 * ido]), |
| IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i])); |
| ComplexMult(&IM(ch[ah + 4 * l1 * ido]), &RE(ch[ah + 4 * l1 * ido]), |
| IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i])); |
| #endif |
| } |
| } |
| } |
| } |
| } |
| |
| |
| /*---------------------------------------------------------------------- |
| cfftf1, cfftf, cfftb, cffti1, cffti. Complex FFTs. |
| ----------------------------------------------------------------------*/ |
| |
| static INLINE void cfftf1pos(uint16_t n, complex_t *c, complex_t *ch, |
| const uint16_t *ifac, const complex_t *wa, |
| const int8_t isign) |
| { |
| uint16_t i; |
| uint16_t k1, l1, l2; |
| uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1; |
| |
| nf = ifac[1]; |
| na = 0; |
| l1 = 1; |
| iw = 0; |
| |
| for (k1 = 2; k1 <= nf + 1; k1++) { |
| ip = ifac[k1]; |
| l2 = ip * l1; |
| ido = n / l2; |
| idl1 = ido * l1; |
| |
| switch (ip) { |
| case 4: |
| ix2 = iw + ido; |
| ix3 = ix2 + ido; |
| |
| if (na == 0) { |
| passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]); |
| } else { |
| passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]); |
| } |
| |
| na = 1 - na; |
| break; |
| case 2: |
| if (na == 0) { |
| passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]); |
| } else { |
| passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]); |
| } |
| |
| na = 1 - na; |
| break; |
| case 3: |
| ix2 = iw + ido; |
| |
| if (na == 0) { |
| passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign); |
| } else { |
| passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign); |
| } |
| |
| na = 1 - na; |
| break; |
| case 5: |
| ix2 = iw + ido; |
| ix3 = ix2 + ido; |
| ix4 = ix3 + ido; |
| |
| if (na == 0) { |
| passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); |
| } else { |
| passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); |
| } |
| |
| na = 1 - na; |
| break; |
| } |
| |
| l1 = l2; |
| iw += (ip - 1) * ido; |
| } |
| |
| if (na == 0) { |
| return; |
| } |
| |
| for (i = 0; i < n; i++) { |
| RE(c[i]) = RE(ch[i]); |
| IM(c[i]) = IM(ch[i]); |
| } |
| } |
| |
| static INLINE void cfftf1neg(uint16_t n, complex_t *c, complex_t *ch, |
| const uint16_t *ifac, const complex_t *wa, |
| const int8_t isign) |
| { |
| uint16_t i; |
| uint16_t k1, l1, l2; |
| uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1; |
| |
| nf = ifac[1]; |
| na = 0; |
| l1 = 1; |
| iw = 0; |
| |
| for (k1 = 2; k1 <= nf + 1; k1++) { |
| ip = ifac[k1]; |
| l2 = ip * l1; |
| ido = n / l2; |
| idl1 = ido * l1; |
| |
| switch (ip) { |
| case 4: |
| ix2 = iw + ido; |
| ix3 = ix2 + ido; |
| |
| if (na == 0) { |
| passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]); |
| } else { |
| passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]); |
| } |
| |
| na = 1 - na; |
| break; |
| case 2: |
| if (na == 0) { |
| passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]); |
| } else { |
| passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]); |
| } |
| |
| na = 1 - na; |
| break; |
| case 3: |
| ix2 = iw + ido; |
| |
| if (na == 0) { |
| passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign); |
| } else { |
| passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign); |
| } |
| |
| na = 1 - na; |
| break; |
| case 5: |
| ix2 = iw + ido; |
| ix3 = ix2 + ido; |
| ix4 = ix3 + ido; |
| |
| if (na == 0) { |
| passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); |
| } else { |
| passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); |
| } |
| |
| na = 1 - na; |
| break; |
| } |
| |
| l1 = l2; |
| iw += (ip - 1) * ido; |
| } |
| |
| if (na == 0) { |
| return; |
| } |
| |
| for (i = 0; i < n; i++) { |
| RE(c[i]) = RE(ch[i]); |
| IM(c[i]) = IM(ch[i]); |
| } |
| } |
| |
| void cfftf(cfft_info *cfft, complex_t *c) |
| { |
| cfftf1neg(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, -1); |
| } |
| |
| void cfftb(cfft_info *cfft, complex_t *c) |
| { |
| cfftf1pos(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, +1); |
| } |
| |
| static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac) |
| { |
| static uint16_t ntryh[4] = {3, 4, 2, 5}; |
| #ifndef FIXED_POINT |
| real_t arg, argh, argld, fi; |
| uint16_t ido, ipm; |
| uint16_t i1, k1, l1, l2; |
| uint16_t ld, ii, ip; |
| #endif |
| uint16_t ntry = 0, i, j; |
| uint16_t ib; |
| uint16_t nf, nl, nq, nr; |
| |
| nl = n; |
| nf = 0; |
| j = 0; |
| |
| startloop: |
| j++; |
| |
| if (j <= 4) { |
| ntry = ntryh[j - 1]; |
| } else { |
| ntry += 2; |
| } |
| |
| do { |
| nq = nl / ntry; |
| nr = nl - ntry * nq; |
| |
| if (nr != 0) { |
| goto startloop; |
| } |
| |
| nf++; |
| ifac[nf + 1] = ntry; |
| nl = nq; |
| |
| if (ntry == 2 && nf != 1) { |
| for (i = 2; i <= nf; i++) { |
| ib = nf - i + 2; |
| ifac[ib + 1] = ifac[ib]; |
| } |
| ifac[2] = 2; |
| } |
| } while (nl != 1); |
| |
| ifac[0] = n; |
| ifac[1] = nf; |
| |
| #ifndef FIXED_POINT |
| argh = (real_t)2.0 * (real_t)M_PI / (real_t)n; |
| i = 0; |
| l1 = 1; |
| |
| for (k1 = 1; k1 <= nf; k1++) { |
| ip = ifac[k1 + 1]; |
| ld = 0; |
| l2 = l1 * ip; |
| ido = n / l2; |
| ipm = ip - 1; |
| |
| for (j = 0; j < ipm; j++) { |
| i1 = i; |
| RE(wa[i]) = 1.0; |
| IM(wa[i]) = 0.0; |
| ld += l1; |
| fi = 0; |
| argld = ld * argh; |
| |
| for (ii = 0; ii < ido; ii++) { |
| i++; |
| fi++; |
| arg = fi * argld; |
| RE(wa[i]) = (real_t)cos(arg); |
| #if 1 |
| IM(wa[i]) = (real_t)sin(arg); |
| #else |
| IM(wa[i]) = (real_t) - sin(arg); |
| #endif |
| } |
| |
| if (ip > 5) { |
| RE(wa[i1]) = RE(wa[i]); |
| IM(wa[i1]) = IM(wa[i]); |
| } |
| } |
| l1 = l2; |
| } |
| #endif |
| } |
| |
| cfft_info *cffti(uint16_t n) |
| { |
| cfft_info *cfft = (cfft_info*)faad_malloc(sizeof(cfft_info)); |
| |
| cfft->n = n; |
| cfft->work = (complex_t*)faad_malloc(n * sizeof(complex_t)); |
| |
| #ifndef FIXED_POINT |
| cfft->tab = (complex_t*)faad_malloc(n * sizeof(complex_t)); |
| |
| cffti1(n, cfft->tab, cfft->ifac); |
| #else |
| cffti1(n, NULL, cfft->ifac); |
| |
| switch (n) { |
| case 64: |
| cfft->tab = (complex_t*)cfft_tab_64; |
| break; |
| case 512: |
| cfft->tab = (complex_t*)cfft_tab_512; |
| break; |
| #ifdef LD_DEC |
| case 256: |
| cfft->tab = (complex_t*)cfft_tab_256; |
| break; |
| #endif |
| |
| #ifdef ALLOW_SMALL_FRAMELENGTH |
| case 60: |
| cfft->tab = (complex_t*)cfft_tab_60; |
| break; |
| case 480: |
| cfft->tab = (complex_t*)cfft_tab_480; |
| break; |
| #ifdef LD_DEC |
| case 240: |
| cfft->tab = (complex_t*)cfft_tab_240; |
| break; |
| #endif |
| #endif |
| case 128: |
| cfft->tab = (complex_t*)cfft_tab_128; |
| break; |
| } |
| #endif |
| |
| return cfft; |
| } |
| |
| void cfftu(cfft_info *cfft) |
| { |
| if (cfft && cfft->work) { |
| faad_free(cfft->work); |
| } |
| #ifndef FIXED_POINT |
| if (cfft && cfft->tab) { |
| faad_free(cfft->tab); |
| } |
| #endif |
| |
| if (cfft) { |
| faad_free(cfft); |
| } |
| } |
| |