blob: 0bdb07ff848db9ca12739402224f84bc1d157a91 [file] [log] [blame]
/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
**
** $Id: cfft.c,v 1.35 2007/11/01 12:33:29 menno Exp $
**/
/*
* Algorithmically based on Fortran-77 FFTPACK
* by Paul N. Swarztrauber(Version 4, 1985).
*
* Does even sized fft only
*/
/* isign is +1 for backward and -1 for forward transforms */
#include <stdlib.h>
#include "common.h"
#include "structs.h"
#include "cfft.h"
#include "cfft_tab.h"
/* static function declarations */
static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa);
static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa);
static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa1, const complex_t *wa2, const int8_t isign);
static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
const complex_t *wa1, const complex_t *wa2, const complex_t *wa3);
static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
const complex_t *wa1, const complex_t *wa2, const complex_t *wa3);
static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,
const complex_t *wa4, const int8_t isign);
//INLINE void cfftf1(uint16_t n, complex_t *c, complex_t *ch,
//const uint16_t *ifac, const complex_t *wa, const int8_t isign);
static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac);
/*----------------------------------------------------------------------
passf2, passf3, passf4, passf5. Complex FFT passes fwd and bwd.
----------------------------------------------------------------------*/
static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa)
{
uint16_t i, k, ah, ac;
if (ido == 1) {
for (k = 0; k < l1; k++) {
ah = 2 * k;
ac = 4 * k;
RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac + 1]);
RE(ch[ah + l1]) = RE(cc[ac]) - RE(cc[ac + 1]);
IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac + 1]);
IM(ch[ah + l1]) = IM(cc[ac]) - IM(cc[ac + 1]);
}
} else {
for (k = 0; k < l1; k++) {
ah = k * ido;
ac = 2 * k * ido;
for (i = 0; i < ido; i++) {
complex_t t2;
RE(ch[ah + i]) = RE(cc[ac + i]) + RE(cc[ac + i + ido]);
RE(t2) = RE(cc[ac + i]) - RE(cc[ac + i + ido]);
IM(ch[ah + i]) = IM(cc[ac + i]) + IM(cc[ac + i + ido]);
IM(t2) = IM(cc[ac + i]) - IM(cc[ac + i + ido]);
#if 1
ComplexMult(&IM(ch[ah + i + l1 * ido]), &RE(ch[ah + i + l1 * ido]),
IM(t2), RE(t2), RE(wa[i]), IM(wa[i]));
#else
ComplexMult(&RE(ch[ah + i + l1 * ido]), &IM(ch[ah + i + l1 * ido]),
RE(t2), IM(t2), RE(wa[i]), IM(wa[i]));
#endif
}
}
}
}
static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa)
{
uint16_t i, k, ah, ac;
if (ido == 1) {
for (k = 0; k < l1; k++) {
ah = 2 * k;
ac = 4 * k;
RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac + 1]);
RE(ch[ah + l1]) = RE(cc[ac]) - RE(cc[ac + 1]);
IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac + 1]);
IM(ch[ah + l1]) = IM(cc[ac]) - IM(cc[ac + 1]);
}
} else {
for (k = 0; k < l1; k++) {
ah = k * ido;
ac = 2 * k * ido;
for (i = 0; i < ido; i++) {
complex_t t2;
RE(ch[ah + i]) = RE(cc[ac + i]) + RE(cc[ac + i + ido]);
RE(t2) = RE(cc[ac + i]) - RE(cc[ac + i + ido]);
IM(ch[ah + i]) = IM(cc[ac + i]) + IM(cc[ac + i + ido]);
IM(t2) = IM(cc[ac + i]) - IM(cc[ac + i + ido]);
#if 1
ComplexMult(&RE(ch[ah + i + l1 * ido]), &IM(ch[ah + i + l1 * ido]),
RE(t2), IM(t2), RE(wa[i]), IM(wa[i]));
#else
ComplexMult(&IM(ch[ah + i + l1 * ido]), &RE(ch[ah + i + l1 * ido]),
IM(t2), RE(t2), RE(wa[i]), IM(wa[i]));
#endif
}
}
}
}
static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
const int8_t isign)
{
static real_t taur = FRAC_CONST(-0.5);
static real_t taui = FRAC_CONST(0.866025403784439);
uint16_t i, k, ac, ah;
complex_t c2, c3, d2, d3, t2;
if (ido == 1) {
if (isign == 1) {
for (k = 0; k < l1; k++) {
ac = 3 * k + 1;
ah = k;
RE(t2) = RE(cc[ac]) + RE(cc[ac + 1]);
IM(t2) = IM(cc[ac]) + IM(cc[ac + 1]);
RE(c2) = RE(cc[ac - 1]) + MUL_F(RE(t2), taur);
IM(c2) = IM(cc[ac - 1]) + MUL_F(IM(t2), taur);
RE(ch[ah]) = RE(cc[ac - 1]) + RE(t2);
IM(ch[ah]) = IM(cc[ac - 1]) + IM(t2);
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac + 1])), taui);
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac + 1])), taui);
RE(ch[ah + l1]) = RE(c2) - IM(c3);
IM(ch[ah + l1]) = IM(c2) + RE(c3);
RE(ch[ah + 2 * l1]) = RE(c2) + IM(c3);
IM(ch[ah + 2 * l1]) = IM(c2) - RE(c3);
}
} else {
for (k = 0; k < l1; k++) {
ac = 3 * k + 1;
ah = k;
RE(t2) = RE(cc[ac]) + RE(cc[ac + 1]);
IM(t2) = IM(cc[ac]) + IM(cc[ac + 1]);
RE(c2) = RE(cc[ac - 1]) + MUL_F(RE(t2), taur);
IM(c2) = IM(cc[ac - 1]) + MUL_F(IM(t2), taur);
RE(ch[ah]) = RE(cc[ac - 1]) + RE(t2);
IM(ch[ah]) = IM(cc[ac - 1]) + IM(t2);
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac + 1])), taui);
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac + 1])), taui);
RE(ch[ah + l1]) = RE(c2) + IM(c3);
IM(ch[ah + l1]) = IM(c2) - RE(c3);
RE(ch[ah + 2 * l1]) = RE(c2) - IM(c3);
IM(ch[ah + 2 * l1]) = IM(c2) + RE(c3);
}
}
} else {
if (isign == 1) {
for (k = 0; k < l1; k++) {
for (i = 0; i < ido; i++) {
ac = i + (3 * k + 1) * ido;
ah = i + k * ido;
RE(t2) = RE(cc[ac]) + RE(cc[ac + ido]);
RE(c2) = RE(cc[ac - ido]) + MUL_F(RE(t2), taur);
IM(t2) = IM(cc[ac]) + IM(cc[ac + ido]);
IM(c2) = IM(cc[ac - ido]) + MUL_F(IM(t2), taur);
RE(ch[ah]) = RE(cc[ac - ido]) + RE(t2);
IM(ch[ah]) = IM(cc[ac - ido]) + IM(t2);
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac + ido])), taui);
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac + ido])), taui);
RE(d2) = RE(c2) - IM(c3);
IM(d3) = IM(c2) - RE(c3);
RE(d3) = RE(c2) + IM(c3);
IM(d2) = IM(c2) + RE(c3);
#if 1
ComplexMult(&IM(ch[ah + l1 * ido]), &RE(ch[ah + l1 * ido]),
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&IM(ch[ah + 2 * l1 * ido]), &RE(ch[ah + 2 * l1 * ido]),
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
#else
ComplexMult(&RE(ch[ah + l1 * ido]), &IM(ch[ah + l1 * ido]),
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&RE(ch[ah + 2 * l1 * ido]), &IM(ch[ah + 2 * l1 * ido]),
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
#endif
}
}
} else {
for (k = 0; k < l1; k++) {
for (i = 0; i < ido; i++) {
ac = i + (3 * k + 1) * ido;
ah = i + k * ido;
RE(t2) = RE(cc[ac]) + RE(cc[ac + ido]);
RE(c2) = RE(cc[ac - ido]) + MUL_F(RE(t2), taur);
IM(t2) = IM(cc[ac]) + IM(cc[ac + ido]);
IM(c2) = IM(cc[ac - ido]) + MUL_F(IM(t2), taur);
RE(ch[ah]) = RE(cc[ac - ido]) + RE(t2);
IM(ch[ah]) = IM(cc[ac - ido]) + IM(t2);
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac + ido])), taui);
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac + ido])), taui);
RE(d2) = RE(c2) + IM(c3);
IM(d3) = IM(c2) + RE(c3);
RE(d3) = RE(c2) - IM(c3);
IM(d2) = IM(c2) - RE(c3);
#if 1
ComplexMult(&RE(ch[ah + l1 * ido]), &IM(ch[ah + l1 * ido]),
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&RE(ch[ah + 2 * l1 * ido]), &IM(ch[ah + 2 * l1 * ido]),
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
#else
ComplexMult(&IM(ch[ah + l1 * ido]), &RE(ch[ah + l1 * ido]),
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&IM(ch[ah + 2 * l1 * ido]), &RE(ch[ah + 2 * l1 * ido]),
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
#endif
}
}
}
}
}
static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
const complex_t *wa3)
{
uint16_t i, k, ac, ah;
if (ido == 1) {
for (k = 0; k < l1; k++) {
complex_t t1, t2, t3, t4;
ac = 4 * k;
ah = k;
RE(t2) = RE(cc[ac]) + RE(cc[ac + 2]);
RE(t1) = RE(cc[ac]) - RE(cc[ac + 2]);
IM(t2) = IM(cc[ac]) + IM(cc[ac + 2]);
IM(t1) = IM(cc[ac]) - IM(cc[ac + 2]);
RE(t3) = RE(cc[ac + 1]) + RE(cc[ac + 3]);
IM(t4) = RE(cc[ac + 1]) - RE(cc[ac + 3]);
IM(t3) = IM(cc[ac + 3]) + IM(cc[ac + 1]);
RE(t4) = IM(cc[ac + 3]) - IM(cc[ac + 1]);
RE(ch[ah]) = RE(t2) + RE(t3);
RE(ch[ah + 2 * l1]) = RE(t2) - RE(t3);
IM(ch[ah]) = IM(t2) + IM(t3);
IM(ch[ah + 2 * l1]) = IM(t2) - IM(t3);
RE(ch[ah + l1]) = RE(t1) + RE(t4);
RE(ch[ah + 3 * l1]) = RE(t1) - RE(t4);
IM(ch[ah + l1]) = IM(t1) + IM(t4);
IM(ch[ah + 3 * l1]) = IM(t1) - IM(t4);
}
} else {
for (k = 0; k < l1; k++) {
ac = 4 * k * ido;
ah = k * ido;
for (i = 0; i < ido; i++) {
complex_t c2, c3, c4, t1, t2, t3, t4;
RE(t2) = RE(cc[ac + i]) + RE(cc[ac + i + 2 * ido]);
RE(t1) = RE(cc[ac + i]) - RE(cc[ac + i + 2 * ido]);
IM(t2) = IM(cc[ac + i]) + IM(cc[ac + i + 2 * ido]);
IM(t1) = IM(cc[ac + i]) - IM(cc[ac + i + 2 * ido]);
RE(t3) = RE(cc[ac + i + ido]) + RE(cc[ac + i + 3 * ido]);
IM(t4) = RE(cc[ac + i + ido]) - RE(cc[ac + i + 3 * ido]);
IM(t3) = IM(cc[ac + i + 3 * ido]) + IM(cc[ac + i + ido]);
RE(t4) = IM(cc[ac + i + 3 * ido]) - IM(cc[ac + i + ido]);
RE(c2) = RE(t1) + RE(t4);
RE(c4) = RE(t1) - RE(t4);
IM(c2) = IM(t1) + IM(t4);
IM(c4) = IM(t1) - IM(t4);
RE(ch[ah + i]) = RE(t2) + RE(t3);
RE(c3) = RE(t2) - RE(t3);
IM(ch[ah + i]) = IM(t2) + IM(t3);
IM(c3) = IM(t2) - IM(t3);
#if 1
ComplexMult(&IM(ch[ah + i + l1 * ido]), &RE(ch[ah + i + l1 * ido]),
IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&IM(ch[ah + i + 2 * l1 * ido]), &RE(ch[ah + i + 2 * l1 * ido]),
IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&IM(ch[ah + i + 3 * l1 * ido]), &RE(ch[ah + i + 3 * l1 * ido]),
IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i]));
#else
ComplexMult(&RE(ch[ah + i + l1 * ido]), &IM(ch[ah + i + l1 * ido]),
RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&RE(ch[ah + i + 2 * l1 * ido]), &IM(ch[ah + i + 2 * l1 * ido]),
RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&RE(ch[ah + i + 3 * l1 * ido]), &IM(ch[ah + i + 3 * l1 * ido]),
RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i]));
#endif
}
}
}
}
static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
const complex_t *wa3)
{
uint16_t i, k, ac, ah;
if (ido == 1) {
for (k = 0; k < l1; k++) {
complex_t t1, t2, t3, t4;
ac = 4 * k;
ah = k;
RE(t2) = RE(cc[ac]) + RE(cc[ac + 2]);
RE(t1) = RE(cc[ac]) - RE(cc[ac + 2]);
IM(t2) = IM(cc[ac]) + IM(cc[ac + 2]);
IM(t1) = IM(cc[ac]) - IM(cc[ac + 2]);
RE(t3) = RE(cc[ac + 1]) + RE(cc[ac + 3]);
IM(t4) = RE(cc[ac + 1]) - RE(cc[ac + 3]);
IM(t3) = IM(cc[ac + 3]) + IM(cc[ac + 1]);
RE(t4) = IM(cc[ac + 3]) - IM(cc[ac + 1]);
RE(ch[ah]) = RE(t2) + RE(t3);
RE(ch[ah + 2 * l1]) = RE(t2) - RE(t3);
IM(ch[ah]) = IM(t2) + IM(t3);
IM(ch[ah + 2 * l1]) = IM(t2) - IM(t3);
RE(ch[ah + l1]) = RE(t1) - RE(t4);
RE(ch[ah + 3 * l1]) = RE(t1) + RE(t4);
IM(ch[ah + l1]) = IM(t1) - IM(t4);
IM(ch[ah + 3 * l1]) = IM(t1) + IM(t4);
}
} else {
for (k = 0; k < l1; k++) {
ac = 4 * k * ido;
ah = k * ido;
for (i = 0; i < ido; i++) {
complex_t c2, c3, c4, t1, t2, t3, t4;
RE(t2) = RE(cc[ac + i]) + RE(cc[ac + i + 2 * ido]);
RE(t1) = RE(cc[ac + i]) - RE(cc[ac + i + 2 * ido]);
IM(t2) = IM(cc[ac + i]) + IM(cc[ac + i + 2 * ido]);
IM(t1) = IM(cc[ac + i]) - IM(cc[ac + i + 2 * ido]);
RE(t3) = RE(cc[ac + i + ido]) + RE(cc[ac + i + 3 * ido]);
IM(t4) = RE(cc[ac + i + ido]) - RE(cc[ac + i + 3 * ido]);
IM(t3) = IM(cc[ac + i + 3 * ido]) + IM(cc[ac + i + ido]);
RE(t4) = IM(cc[ac + i + 3 * ido]) - IM(cc[ac + i + ido]);
RE(c2) = RE(t1) - RE(t4);
RE(c4) = RE(t1) + RE(t4);
IM(c2) = IM(t1) - IM(t4);
IM(c4) = IM(t1) + IM(t4);
RE(ch[ah + i]) = RE(t2) + RE(t3);
RE(c3) = RE(t2) - RE(t3);
IM(ch[ah + i]) = IM(t2) + IM(t3);
IM(c3) = IM(t2) - IM(t3);
#if 1
ComplexMult(&RE(ch[ah + i + l1 * ido]), &IM(ch[ah + i + l1 * ido]),
RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&RE(ch[ah + i + 2 * l1 * ido]), &IM(ch[ah + i + 2 * l1 * ido]),
RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&RE(ch[ah + i + 3 * l1 * ido]), &IM(ch[ah + i + 3 * l1 * ido]),
RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i]));
#else
ComplexMult(&IM(ch[ah + i + l1 * ido]), &RE(ch[ah + i + l1 * ido]),
IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&IM(ch[ah + i + 2 * l1 * ido]), &RE(ch[ah + i + 2 * l1 * ido]),
IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&IM(ch[ah + i + 3 * l1 * ido]), &RE(ch[ah + i + 3 * l1 * ido]),
IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i]));
#endif
}
}
}
}
static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc,
complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,
const complex_t *wa4, const int8_t isign)
{
static real_t tr11 = FRAC_CONST(0.309016994374947);
static real_t ti11 = FRAC_CONST(0.951056516295154);
static real_t tr12 = FRAC_CONST(-0.809016994374947);
static real_t ti12 = FRAC_CONST(0.587785252292473);
uint16_t i, k, ac, ah;
complex_t c2, c3, c4, c5, d3, d4, d5, d2, t2, t3, t4, t5;
if (ido == 1) {
if (isign == 1) {
for (k = 0; k < l1; k++) {
ac = 5 * k + 1;
ah = k;
RE(t2) = RE(cc[ac]) + RE(cc[ac + 3]);
IM(t2) = IM(cc[ac]) + IM(cc[ac + 3]);
RE(t3) = RE(cc[ac + 1]) + RE(cc[ac + 2]);
IM(t3) = IM(cc[ac + 1]) + IM(cc[ac + 2]);
RE(t4) = RE(cc[ac + 1]) - RE(cc[ac + 2]);
IM(t4) = IM(cc[ac + 1]) - IM(cc[ac + 2]);
RE(t5) = RE(cc[ac]) - RE(cc[ac + 3]);
IM(t5) = IM(cc[ac]) - IM(cc[ac + 3]);
RE(ch[ah]) = RE(cc[ac - 1]) + RE(t2) + RE(t3);
IM(ch[ah]) = IM(cc[ac - 1]) + IM(t2) + IM(t3);
RE(c2) = RE(cc[ac - 1]) + MUL_F(RE(t2), tr11) + MUL_F(RE(t3), tr12);
IM(c2) = IM(cc[ac - 1]) + MUL_F(IM(t2), tr11) + MUL_F(IM(t3), tr12);
RE(c3) = RE(cc[ac - 1]) + MUL_F(RE(t2), tr12) + MUL_F(RE(t3), tr11);
IM(c3) = IM(cc[ac - 1]) + MUL_F(IM(t2), tr12) + MUL_F(IM(t3), tr11);
ComplexMult(&RE(c5), &RE(c4),
ti11, ti12, RE(t5), RE(t4));
ComplexMult(&IM(c5), &IM(c4),
ti11, ti12, IM(t5), IM(t4));
RE(ch[ah + l1]) = RE(c2) - IM(c5);
IM(ch[ah + l1]) = IM(c2) + RE(c5);
RE(ch[ah + 2 * l1]) = RE(c3) - IM(c4);
IM(ch[ah + 2 * l1]) = IM(c3) + RE(c4);
RE(ch[ah + 3 * l1]) = RE(c3) + IM(c4);
IM(ch[ah + 3 * l1]) = IM(c3) - RE(c4);
RE(ch[ah + 4 * l1]) = RE(c2) + IM(c5);
IM(ch[ah + 4 * l1]) = IM(c2) - RE(c5);
}
} else {
for (k = 0; k < l1; k++) {
ac = 5 * k + 1;
ah = k;
RE(t2) = RE(cc[ac]) + RE(cc[ac + 3]);
IM(t2) = IM(cc[ac]) + IM(cc[ac + 3]);
RE(t3) = RE(cc[ac + 1]) + RE(cc[ac + 2]);
IM(t3) = IM(cc[ac + 1]) + IM(cc[ac + 2]);
RE(t4) = RE(cc[ac + 1]) - RE(cc[ac + 2]);
IM(t4) = IM(cc[ac + 1]) - IM(cc[ac + 2]);
RE(t5) = RE(cc[ac]) - RE(cc[ac + 3]);
IM(t5) = IM(cc[ac]) - IM(cc[ac + 3]);
RE(ch[ah]) = RE(cc[ac - 1]) + RE(t2) + RE(t3);
IM(ch[ah]) = IM(cc[ac - 1]) + IM(t2) + IM(t3);
RE(c2) = RE(cc[ac - 1]) + MUL_F(RE(t2), tr11) + MUL_F(RE(t3), tr12);
IM(c2) = IM(cc[ac - 1]) + MUL_F(IM(t2), tr11) + MUL_F(IM(t3), tr12);
RE(c3) = RE(cc[ac - 1]) + MUL_F(RE(t2), tr12) + MUL_F(RE(t3), tr11);
IM(c3) = IM(cc[ac - 1]) + MUL_F(IM(t2), tr12) + MUL_F(IM(t3), tr11);
ComplexMult(&RE(c4), &RE(c5),
ti12, ti11, RE(t5), RE(t4));
ComplexMult(&IM(c4), &IM(c5),
ti12, ti11, IM(t5), IM(t4));
RE(ch[ah + l1]) = RE(c2) + IM(c5);
IM(ch[ah + l1]) = IM(c2) - RE(c5);
RE(ch[ah + 2 * l1]) = RE(c3) + IM(c4);
IM(ch[ah + 2 * l1]) = IM(c3) - RE(c4);
RE(ch[ah + 3 * l1]) = RE(c3) - IM(c4);
IM(ch[ah + 3 * l1]) = IM(c3) + RE(c4);
RE(ch[ah + 4 * l1]) = RE(c2) - IM(c5);
IM(ch[ah + 4 * l1]) = IM(c2) + RE(c5);
}
}
} else {
if (isign == 1) {
for (k = 0; k < l1; k++) {
for (i = 0; i < ido; i++) {
ac = i + (k * 5 + 1) * ido;
ah = i + k * ido;
RE(t2) = RE(cc[ac]) + RE(cc[ac + 3 * ido]);
IM(t2) = IM(cc[ac]) + IM(cc[ac + 3 * ido]);
RE(t3) = RE(cc[ac + ido]) + RE(cc[ac + 2 * ido]);
IM(t3) = IM(cc[ac + ido]) + IM(cc[ac + 2 * ido]);
RE(t4) = RE(cc[ac + ido]) - RE(cc[ac + 2 * ido]);
IM(t4) = IM(cc[ac + ido]) - IM(cc[ac + 2 * ido]);
RE(t5) = RE(cc[ac]) - RE(cc[ac + 3 * ido]);
IM(t5) = IM(cc[ac]) - IM(cc[ac + 3 * ido]);
RE(ch[ah]) = RE(cc[ac - ido]) + RE(t2) + RE(t3);
IM(ch[ah]) = IM(cc[ac - ido]) + IM(t2) + IM(t3);
RE(c2) = RE(cc[ac - ido]) + MUL_F(RE(t2), tr11) + MUL_F(RE(t3), tr12);
IM(c2) = IM(cc[ac - ido]) + MUL_F(IM(t2), tr11) + MUL_F(IM(t3), tr12);
RE(c3) = RE(cc[ac - ido]) + MUL_F(RE(t2), tr12) + MUL_F(RE(t3), tr11);
IM(c3) = IM(cc[ac - ido]) + MUL_F(IM(t2), tr12) + MUL_F(IM(t3), tr11);
ComplexMult(&RE(c5), &RE(c4),
ti11, ti12, RE(t5), RE(t4));
ComplexMult(&IM(c5), &IM(c4),
ti11, ti12, IM(t5), IM(t4));
IM(d2) = IM(c2) + RE(c5);
IM(d3) = IM(c3) + RE(c4);
RE(d4) = RE(c3) + IM(c4);
RE(d5) = RE(c2) + IM(c5);
RE(d2) = RE(c2) - IM(c5);
IM(d5) = IM(c2) - RE(c5);
RE(d3) = RE(c3) - IM(c4);
IM(d4) = IM(c3) - RE(c4);
#if 1
ComplexMult(&IM(ch[ah + l1 * ido]), &RE(ch[ah + l1 * ido]),
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&IM(ch[ah + 2 * l1 * ido]), &RE(ch[ah + 2 * l1 * ido]),
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&IM(ch[ah + 3 * l1 * ido]), &RE(ch[ah + 3 * l1 * ido]),
IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));
ComplexMult(&IM(ch[ah + 4 * l1 * ido]), &RE(ch[ah + 4 * l1 * ido]),
IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i]));
#else
ComplexMult(&RE(ch[ah + l1 * ido]), &IM(ch[ah + l1 * ido]),
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&RE(ch[ah + 2 * l1 * ido]), &IM(ch[ah + 2 * l1 * ido]),
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&RE(ch[ah + 3 * l1 * ido]), &IM(ch[ah + 3 * l1 * ido]),
RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));
ComplexMult(&RE(ch[ah + 4 * l1 * ido]), &IM(ch[ah + 4 * l1 * ido]),
RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i]));
#endif
}
}
} else {
for (k = 0; k < l1; k++) {
for (i = 0; i < ido; i++) {
ac = i + (k * 5 + 1) * ido;
ah = i + k * ido;
RE(t2) = RE(cc[ac]) + RE(cc[ac + 3 * ido]);
IM(t2) = IM(cc[ac]) + IM(cc[ac + 3 * ido]);
RE(t3) = RE(cc[ac + ido]) + RE(cc[ac + 2 * ido]);
IM(t3) = IM(cc[ac + ido]) + IM(cc[ac + 2 * ido]);
RE(t4) = RE(cc[ac + ido]) - RE(cc[ac + 2 * ido]);
IM(t4) = IM(cc[ac + ido]) - IM(cc[ac + 2 * ido]);
RE(t5) = RE(cc[ac]) - RE(cc[ac + 3 * ido]);
IM(t5) = IM(cc[ac]) - IM(cc[ac + 3 * ido]);
RE(ch[ah]) = RE(cc[ac - ido]) + RE(t2) + RE(t3);
IM(ch[ah]) = IM(cc[ac - ido]) + IM(t2) + IM(t3);
RE(c2) = RE(cc[ac - ido]) + MUL_F(RE(t2), tr11) + MUL_F(RE(t3), tr12);
IM(c2) = IM(cc[ac - ido]) + MUL_F(IM(t2), tr11) + MUL_F(IM(t3), tr12);
RE(c3) = RE(cc[ac - ido]) + MUL_F(RE(t2), tr12) + MUL_F(RE(t3), tr11);
IM(c3) = IM(cc[ac - ido]) + MUL_F(IM(t2), tr12) + MUL_F(IM(t3), tr11);
ComplexMult(&RE(c4), &RE(c5),
ti12, ti11, RE(t5), RE(t4));
ComplexMult(&IM(c4), &IM(c5),
ti12, ti11, IM(t5), IM(t4));
IM(d2) = IM(c2) - RE(c5);
IM(d3) = IM(c3) - RE(c4);
RE(d4) = RE(c3) - IM(c4);
RE(d5) = RE(c2) - IM(c5);
RE(d2) = RE(c2) + IM(c5);
IM(d5) = IM(c2) + RE(c5);
RE(d3) = RE(c3) + IM(c4);
IM(d4) = IM(c3) + RE(c4);
#if 1
ComplexMult(&RE(ch[ah + l1 * ido]), &IM(ch[ah + l1 * ido]),
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&RE(ch[ah + 2 * l1 * ido]), &IM(ch[ah + 2 * l1 * ido]),
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&RE(ch[ah + 3 * l1 * ido]), &IM(ch[ah + 3 * l1 * ido]),
RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));
ComplexMult(&RE(ch[ah + 4 * l1 * ido]), &IM(ch[ah + 4 * l1 * ido]),
RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i]));
#else
ComplexMult(&IM(ch[ah + l1 * ido]), &RE(ch[ah + l1 * ido]),
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
ComplexMult(&IM(ch[ah + 2 * l1 * ido]), &RE(ch[ah + 2 * l1 * ido]),
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
ComplexMult(&IM(ch[ah + 3 * l1 * ido]), &RE(ch[ah + 3 * l1 * ido]),
IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));
ComplexMult(&IM(ch[ah + 4 * l1 * ido]), &RE(ch[ah + 4 * l1 * ido]),
IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i]));
#endif
}
}
}
}
}
/*----------------------------------------------------------------------
cfftf1, cfftf, cfftb, cffti1, cffti. Complex FFTs.
----------------------------------------------------------------------*/
static INLINE void cfftf1pos(uint16_t n, complex_t *c, complex_t *ch,
const uint16_t *ifac, const complex_t *wa,
const int8_t isign)
{
uint16_t i;
uint16_t k1, l1, l2;
uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;
nf = ifac[1];
na = 0;
l1 = 1;
iw = 0;
for (k1 = 2; k1 <= nf + 1; k1++) {
ip = ifac[k1];
l2 = ip * l1;
ido = n / l2;
idl1 = ido * l1;
switch (ip) {
case 4:
ix2 = iw + ido;
ix3 = ix2 + ido;
if (na == 0) {
passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
} else {
passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);
}
na = 1 - na;
break;
case 2:
if (na == 0) {
passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
} else {
passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
}
na = 1 - na;
break;
case 3:
ix2 = iw + ido;
if (na == 0) {
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
} else {
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);
}
na = 1 - na;
break;
case 5:
ix2 = iw + ido;
ix3 = ix2 + ido;
ix4 = ix3 + ido;
if (na == 0) {
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
} else {
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
}
na = 1 - na;
break;
}
l1 = l2;
iw += (ip - 1) * ido;
}
if (na == 0) {
return;
}
for (i = 0; i < n; i++) {
RE(c[i]) = RE(ch[i]);
IM(c[i]) = IM(ch[i]);
}
}
static INLINE void cfftf1neg(uint16_t n, complex_t *c, complex_t *ch,
const uint16_t *ifac, const complex_t *wa,
const int8_t isign)
{
uint16_t i;
uint16_t k1, l1, l2;
uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;
nf = ifac[1];
na = 0;
l1 = 1;
iw = 0;
for (k1 = 2; k1 <= nf + 1; k1++) {
ip = ifac[k1];
l2 = ip * l1;
ido = n / l2;
idl1 = ido * l1;
switch (ip) {
case 4:
ix2 = iw + ido;
ix3 = ix2 + ido;
if (na == 0) {
passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
} else {
passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);
}
na = 1 - na;
break;
case 2:
if (na == 0) {
passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
} else {
passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
}
na = 1 - na;
break;
case 3:
ix2 = iw + ido;
if (na == 0) {
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
} else {
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);
}
na = 1 - na;
break;
case 5:
ix2 = iw + ido;
ix3 = ix2 + ido;
ix4 = ix3 + ido;
if (na == 0) {
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
} else {
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
}
na = 1 - na;
break;
}
l1 = l2;
iw += (ip - 1) * ido;
}
if (na == 0) {
return;
}
for (i = 0; i < n; i++) {
RE(c[i]) = RE(ch[i]);
IM(c[i]) = IM(ch[i]);
}
}
void cfftf(cfft_info *cfft, complex_t *c)
{
cfftf1neg(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, -1);
}
void cfftb(cfft_info *cfft, complex_t *c)
{
cfftf1pos(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, +1);
}
static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac)
{
static uint16_t ntryh[4] = {3, 4, 2, 5};
#ifndef FIXED_POINT
real_t arg, argh, argld, fi;
uint16_t ido, ipm;
uint16_t i1, k1, l1, l2;
uint16_t ld, ii, ip;
#endif
uint16_t ntry = 0, i, j;
uint16_t ib;
uint16_t nf, nl, nq, nr;
nl = n;
nf = 0;
j = 0;
startloop:
j++;
if (j <= 4) {
ntry = ntryh[j - 1];
} else {
ntry += 2;
}
do {
nq = nl / ntry;
nr = nl - ntry * nq;
if (nr != 0) {
goto startloop;
}
nf++;
ifac[nf + 1] = ntry;
nl = nq;
if (ntry == 2 && nf != 1) {
for (i = 2; i <= nf; i++) {
ib = nf - i + 2;
ifac[ib + 1] = ifac[ib];
}
ifac[2] = 2;
}
} while (nl != 1);
ifac[0] = n;
ifac[1] = nf;
#ifndef FIXED_POINT
argh = (real_t)2.0 * (real_t)M_PI / (real_t)n;
i = 0;
l1 = 1;
for (k1 = 1; k1 <= nf; k1++) {
ip = ifac[k1 + 1];
ld = 0;
l2 = l1 * ip;
ido = n / l2;
ipm = ip - 1;
for (j = 0; j < ipm; j++) {
i1 = i;
RE(wa[i]) = 1.0;
IM(wa[i]) = 0.0;
ld += l1;
fi = 0;
argld = ld * argh;
for (ii = 0; ii < ido; ii++) {
i++;
fi++;
arg = fi * argld;
RE(wa[i]) = (real_t)cos(arg);
#if 1
IM(wa[i]) = (real_t)sin(arg);
#else
IM(wa[i]) = (real_t) - sin(arg);
#endif
}
if (ip > 5) {
RE(wa[i1]) = RE(wa[i]);
IM(wa[i1]) = IM(wa[i]);
}
}
l1 = l2;
}
#endif
}
cfft_info *cffti(uint16_t n)
{
cfft_info *cfft = (cfft_info*)faad_malloc(sizeof(cfft_info));
cfft->n = n;
cfft->work = (complex_t*)faad_malloc(n * sizeof(complex_t));
#ifndef FIXED_POINT
cfft->tab = (complex_t*)faad_malloc(n * sizeof(complex_t));
cffti1(n, cfft->tab, cfft->ifac);
#else
cffti1(n, NULL, cfft->ifac);
switch (n) {
case 64:
cfft->tab = (complex_t*)cfft_tab_64;
break;
case 512:
cfft->tab = (complex_t*)cfft_tab_512;
break;
#ifdef LD_DEC
case 256:
cfft->tab = (complex_t*)cfft_tab_256;
break;
#endif
#ifdef ALLOW_SMALL_FRAMELENGTH
case 60:
cfft->tab = (complex_t*)cfft_tab_60;
break;
case 480:
cfft->tab = (complex_t*)cfft_tab_480;
break;
#ifdef LD_DEC
case 240:
cfft->tab = (complex_t*)cfft_tab_240;
break;
#endif
#endif
case 128:
cfft->tab = (complex_t*)cfft_tab_128;
break;
}
#endif
return cfft;
}
void cfftu(cfft_info *cfft)
{
if (cfft && cfft->work) {
faad_free(cfft->work);
}
#ifndef FIXED_POINT
if (cfft && cfft->tab) {
faad_free(cfft->tab);
}
#endif
if (cfft) {
faad_free(cfft);
}
}