| /* |
| ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding |
| ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com |
| ** |
| ** This program is free software; you can redistribute it and/or modify |
| ** it under the terms of the GNU General Public License as published by |
| ** the Free Software Foundation; either version 2 of the License, or |
| ** (at your option) any later version. |
| ** |
| ** This program is distributed in the hope that it will be useful, |
| ** but WITHOUT ANY WARRANTY; without even the implied warranty of |
| ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| ** GNU General Public License for more details. |
| ** |
| ** You should have received a copy of the GNU General Public License |
| ** along with this program; if not, write to the Free Software |
| ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| ** |
| ** Any non-GPL usage of this software or parts of this software is strictly |
| ** forbidden. |
| ** |
| ** The "appropriate copyright message" mentioned in section 2c of the GPLv2 |
| ** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" |
| ** |
| ** Commercial non-GPL licensing of this software is possible. |
| ** For more info contact Nero AG through Mpeg4AAClicense@nero.com. |
| ** |
| ** $Id: common.c,v 1.27 2008/03/23 23:03:28 menno Exp $ |
| **/ |
| |
| /* just some common functions that could be used anywhere */ |
| #include <stdlib.h> |
| #include "common.h" |
| #include "structs.h" |
| |
| #include "syntax.h" |
| |
| |
| /* Returns the sample rate index based on the samplerate */ |
| uint8_t get_sr_index(const uint32_t samplerate) |
| { |
| if (92017 <= samplerate) { |
| return 0; |
| } |
| if (75132 <= samplerate) { |
| return 1; |
| } |
| if (55426 <= samplerate) { |
| return 2; |
| } |
| if (46009 <= samplerate) { |
| return 3; |
| } |
| if (37566 <= samplerate) { |
| return 4; |
| } |
| if (27713 <= samplerate) { |
| return 5; |
| } |
| if (23004 <= samplerate) { |
| return 6; |
| } |
| if (18783 <= samplerate) { |
| return 7; |
| } |
| if (13856 <= samplerate) { |
| return 8; |
| } |
| if (11502 <= samplerate) { |
| return 9; |
| } |
| if (9391 <= samplerate) { |
| return 10; |
| } |
| |
| return 11; |
| } |
| |
| /* Returns the sample rate based on the sample rate index */ |
| uint32_t get_sample_rate(const uint8_t sr_index) |
| { |
| static const uint32_t sample_rates[] = { |
| 96000, 88200, 64000, 48000, 44100, 32000, |
| 24000, 22050, 16000, 12000, 11025, 8000 |
| }; |
| |
| if (sr_index < 12) { |
| return sample_rates[sr_index]; |
| } |
| |
| return 0; |
| } |
| |
| uint8_t max_pred_sfb(const uint8_t sr_index) |
| { |
| static const uint8_t pred_sfb_max[] = { |
| 33, 33, 38, 40, 40, 40, 41, 41, 37, 37, 37, 34 |
| }; |
| |
| |
| if (sr_index < 12) { |
| return pred_sfb_max[sr_index]; |
| } |
| |
| return 0; |
| } |
| |
| uint8_t max_tns_sfb(const uint8_t sr_index, const uint8_t object_type, |
| const uint8_t is_short) |
| { |
| /* entry for each sampling rate |
| * 1 Main/LC long window |
| * 2 Main/LC short window |
| * 3 SSR long window |
| * 4 SSR short window |
| */ |
| static const uint8_t tns_sbf_max[][4] = { |
| {31, 9, 28, 7}, /* 96000 */ |
| {31, 9, 28, 7}, /* 88200 */ |
| {34, 10, 27, 7}, /* 64000 */ |
| {40, 14, 26, 6}, /* 48000 */ |
| {42, 14, 26, 6}, /* 44100 */ |
| {51, 14, 26, 6}, /* 32000 */ |
| {46, 14, 29, 7}, /* 24000 */ |
| {46, 14, 29, 7}, /* 22050 */ |
| {42, 14, 23, 8}, /* 16000 */ |
| {42, 14, 23, 8}, /* 12000 */ |
| {42, 14, 23, 8}, /* 11025 */ |
| {39, 14, 19, 7}, /* 8000 */ |
| {39, 14, 19, 7}, /* 7350 */ |
| {0, 0, 0, 0}, |
| {0, 0, 0, 0}, |
| {0, 0, 0, 0} |
| }; |
| uint8_t i = 0; |
| |
| if (is_short) { |
| i++; |
| } |
| if (object_type == SSR) { |
| i += 2; |
| } |
| |
| return tns_sbf_max[sr_index][i]; |
| } |
| |
| /* Returns 0 if an object type is decodable, otherwise returns -1 */ |
| int8_t can_decode_ot(const uint8_t object_type) |
| { |
| switch (object_type) { |
| case LC: |
| return 0; |
| case MAIN: |
| #ifdef MAIN_DEC |
| return 0; |
| #else |
| return -1; |
| #endif |
| case SSR: |
| #ifdef SSR_DEC |
| return 0; |
| #else |
| return -1; |
| #endif |
| case LTP: |
| #ifdef LTP_DEC |
| return 0; |
| #else |
| return -1; |
| #endif |
| |
| /* ER object types */ |
| #ifdef ERROR_RESILIENCE |
| case ER_LC: |
| #ifdef DRM |
| case DRM_ER_LC: |
| #endif |
| return 0; |
| case ER_LTP: |
| #ifdef LTP_DEC |
| return 0; |
| #else |
| return -1; |
| #endif |
| case LD: |
| #ifdef LD_DEC |
| return 0; |
| #else |
| return -1; |
| #endif |
| #endif |
| } |
| |
| return -1; |
| } |
| |
| void *faad_malloc(size_t size) |
| { |
| #if 0 // defined(_WIN32) && !defined(_WIN32_WCE) |
| return _aligned_malloc(size, 16); |
| #else // #ifdef 0 |
| return malloc(size); |
| #endif // #ifdef 0 |
| } |
| |
| /* common free function */ |
| void faad_free(void *b) |
| { |
| #if 0 // defined(_WIN32) && !defined(_WIN32_WCE) |
| _aligned_free(b); |
| #else |
| free(b); |
| } |
| #endif |
| |
| static const uint8_t Parity [256] = { // parity |
| 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 |
| }; |
| |
| //static uint32_t __r1 = 1; |
| //static uint32_t __r2 = 1; |
| |
| |
| /* |
| * This is a simple random number generator with good quality for audio purposes. |
| * It consists of two polycounters with opposite rotation direction and different |
| * periods. The periods are coprime, so the total period is the product of both. |
| * |
| * ------------------------------------------------------------------------------------------------- |
| * +-> |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0| |
| * | ------------------------------------------------------------------------------------------------- |
| * | | | | | | | |
| * | +--+--+--+-XOR-+--------+ |
| * | | |
| * +--------------------------------------------------------------------------------------+ |
| * |
| * ------------------------------------------------------------------------------------------------- |
| * |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0| <-+ |
| * ------------------------------------------------------------------------------------------------- | |
| * | | | | | |
| * +--+----XOR----+--+ | |
| * | | |
| * +----------------------------------------------------------------------------------------+ |
| * |
| * |
| * The first has an period of 3*5*17*257*65537, the second of 7*47*73*178481, |
| * which gives a period of 18.410.713.077.675.721.215. The result is the |
| * XORed values of both generators. |
| */ |
| uint32_t ne_rng(uint32_t *__r1, uint32_t *__r2) |
| { |
| uint32_t t1, t2, t3, t4; |
| |
| t3 = t1 = *__r1; |
| t4 = t2 = *__r2; // Parity calculation is done via table lookup, this is also available |
| t1 &= 0xF5; |
| t2 >>= 25; // on CPUs without parity, can be implemented in C and avoid unpredictable |
| t1 = Parity [t1]; |
| t2 &= 0x63; // jumps and slow rotate through the carry flag operations. |
| t1 <<= 31; |
| t2 = Parity [t2]; |
| |
| return (*__r1 = (t3 >> 1) | t1) ^(*__r2 = (t4 + t4) | t2); |
| } |
| |
| static uint32_t ones32(uint32_t x) |
| { |
| x -= ((x >> 1) & 0x55555555); |
| x = (((x >> 2) & 0x33333333) + (x & 0x33333333)); |
| x = (((x >> 4) + x) & 0x0f0f0f0f); |
| x += (x >> 8); |
| x += (x >> 16); |
| |
| return (x & 0x0000003f); |
| } |
| /* |
| static uint32_t floor_log2(uint32_t x) |
| { |
| #if 1 |
| x |= (x >> 1); |
| x |= (x >> 2); |
| x |= (x >> 4); |
| x |= (x >> 8); |
| x |= (x >> 16); |
| |
| return (ones32(x) - 1); |
| #else |
| uint32_t count = 0; |
| |
| while (x >>= 1) { |
| count++; |
| } |
| |
| return count; |
| #endif |
| } |
| */ |
| /* returns position of first bit that is not 0 from msb, |
| * starting count at lsb */ |
| uint32_t wl_min_lzc(uint32_t x) |
| { |
| #if 1 |
| x |= (x >> 1); |
| x |= (x >> 2); |
| x |= (x >> 4); |
| x |= (x >> 8); |
| x |= (x >> 16); |
| |
| return (ones32(x)); |
| #else |
| uint32_t count = 0; |
| |
| while (x >>= 1) { |
| count++; |
| } |
| |
| return (count + 1); |
| #endif |
| } |
| |
| #ifdef FIXED_POINT |
| |
| #define TABLE_BITS 6 |
| /* just take the maximum number of bits for interpolation */ |
| #define INTERP_BITS (REAL_BITS-TABLE_BITS) |
| |
| static const real_t pow2_tab[] = { |
| REAL_CONST(1.000000000000000), REAL_CONST(1.010889286051701), REAL_CONST(1.021897148654117), |
| REAL_CONST(1.033024879021228), REAL_CONST(1.044273782427414), REAL_CONST(1.055645178360557), |
| REAL_CONST(1.067140400676824), REAL_CONST(1.078760797757120), REAL_CONST(1.090507732665258), |
| REAL_CONST(1.102382583307841), REAL_CONST(1.114386742595892), REAL_CONST(1.126521618608242), |
| REAL_CONST(1.138788634756692), REAL_CONST(1.151189229952983), REAL_CONST(1.163724858777578), |
| REAL_CONST(1.176396991650281), REAL_CONST(1.189207115002721), REAL_CONST(1.202156731452703), |
| REAL_CONST(1.215247359980469), REAL_CONST(1.228480536106870), REAL_CONST(1.241857812073484), |
| REAL_CONST(1.255380757024691), REAL_CONST(1.269050957191733), REAL_CONST(1.282870016078778), |
| REAL_CONST(1.296839554651010), REAL_CONST(1.310961211524764), REAL_CONST(1.325236643159741), |
| REAL_CONST(1.339667524053303), REAL_CONST(1.354255546936893), REAL_CONST(1.369002422974591), |
| REAL_CONST(1.383909881963832), REAL_CONST(1.398979672538311), REAL_CONST(1.414213562373095), |
| REAL_CONST(1.429613338391970), REAL_CONST(1.445180806977047), REAL_CONST(1.460917794180647), |
| REAL_CONST(1.476826145939499), REAL_CONST(1.492907728291265), REAL_CONST(1.509164427593423), |
| REAL_CONST(1.525598150744538), REAL_CONST(1.542210825407941), REAL_CONST(1.559004400237837), |
| REAL_CONST(1.575980845107887), REAL_CONST(1.593142151342267), REAL_CONST(1.610490331949254), |
| REAL_CONST(1.628027421857348), REAL_CONST(1.645755478153965), REAL_CONST(1.663676580326736), |
| REAL_CONST(1.681792830507429), REAL_CONST(1.700106353718524), REAL_CONST(1.718619298122478), |
| REAL_CONST(1.737333835273706), REAL_CONST(1.756252160373300), REAL_CONST(1.775376492526521), |
| REAL_CONST(1.794709075003107), REAL_CONST(1.814252175500399), REAL_CONST(1.834008086409342), |
| REAL_CONST(1.853979125083386), REAL_CONST(1.874167634110300), REAL_CONST(1.894575981586966), |
| REAL_CONST(1.915206561397147), REAL_CONST(1.936061793492294), REAL_CONST(1.957144124175400), |
| REAL_CONST(1.978456026387951), REAL_CONST(2.000000000000000) |
| }; |
| |
| static const real_t log2_tab[] = { |
| REAL_CONST(0.000000000000000), REAL_CONST(0.022367813028455), REAL_CONST(0.044394119358453), |
| REAL_CONST(0.066089190457772), REAL_CONST(0.087462841250339), REAL_CONST(0.108524456778169), |
| REAL_CONST(0.129283016944966), REAL_CONST(0.149747119504682), REAL_CONST(0.169925001442312), |
| REAL_CONST(0.189824558880017), REAL_CONST(0.209453365628950), REAL_CONST(0.228818690495881), |
| REAL_CONST(0.247927513443585), REAL_CONST(0.266786540694901), REAL_CONST(0.285402218862248), |
| REAL_CONST(0.303780748177103), REAL_CONST(0.321928094887362), REAL_CONST(0.339850002884625), |
| REAL_CONST(0.357552004618084), REAL_CONST(0.375039431346925), REAL_CONST(0.392317422778760), |
| REAL_CONST(0.409390936137702), REAL_CONST(0.426264754702098), REAL_CONST(0.442943495848728), |
| REAL_CONST(0.459431618637297), REAL_CONST(0.475733430966398), REAL_CONST(0.491853096329675), |
| REAL_CONST(0.507794640198696), REAL_CONST(0.523561956057013), REAL_CONST(0.539158811108031), |
| REAL_CONST(0.554588851677637), REAL_CONST(0.569855608330948), REAL_CONST(0.584962500721156), |
| REAL_CONST(0.599912842187128), REAL_CONST(0.614709844115208), REAL_CONST(0.629356620079610), |
| REAL_CONST(0.643856189774725), REAL_CONST(0.658211482751795), REAL_CONST(0.672425341971496), |
| REAL_CONST(0.686500527183218), REAL_CONST(0.700439718141092), REAL_CONST(0.714245517666123), |
| REAL_CONST(0.727920454563199), REAL_CONST(0.741466986401147), REAL_CONST(0.754887502163469), |
| REAL_CONST(0.768184324776926), REAL_CONST(0.781359713524660), REAL_CONST(0.794415866350106), |
| REAL_CONST(0.807354922057604), REAL_CONST(0.820178962415188), REAL_CONST(0.832890014164742), |
| REAL_CONST(0.845490050944375), REAL_CONST(0.857980995127572), REAL_CONST(0.870364719583405), |
| REAL_CONST(0.882643049361841), REAL_CONST(0.894817763307943), REAL_CONST(0.906890595608519), |
| REAL_CONST(0.918863237274595), REAL_CONST(0.930737337562886), REAL_CONST(0.942514505339240), |
| REAL_CONST(0.954196310386875), REAL_CONST(0.965784284662087), REAL_CONST(0.977279923499917), |
| REAL_CONST(0.988684686772166), REAL_CONST(1.000000000000000) |
| }; |
| |
| real_t pow2_fix(real_t val) |
| { |
| uint32_t x1, x2; |
| uint32_t errcorr; |
| uint32_t index_frac; |
| real_t retval; |
| int32_t whole = (val >> REAL_BITS); |
| |
| /* rest = [0..1] */ |
| int32_t rest = val - (whole << REAL_BITS); |
| |
| /* index into pow2_tab */ |
| int32_t index = rest >> (REAL_BITS - TABLE_BITS); |
| |
| |
| if (val == 0) { |
| return (1 << REAL_BITS); |
| } |
| |
| /* leave INTERP_BITS bits */ |
| index_frac = rest >> (REAL_BITS - TABLE_BITS - INTERP_BITS); |
| index_frac = index_frac & ((1 << INTERP_BITS) - 1); |
| |
| if (whole > 0) { |
| retval = 1 << whole; |
| } else { |
| retval = REAL_CONST(1) >> -whole; |
| } |
| |
| x1 = pow2_tab[index & ((1 << TABLE_BITS) - 1)]; |
| x2 = pow2_tab[(index & ((1 << TABLE_BITS) - 1)) + 1]; |
| errcorr = ((index_frac * (x2 - x1))) >> INTERP_BITS; |
| |
| if (whole > 0) { |
| retval = retval * (errcorr + x1); |
| } else { |
| retval = MUL_R(retval, (errcorr + x1)); |
| } |
| |
| return retval; |
| } |
| |
| int32_t pow2_int(real_t val) |
| { |
| uint32_t x1, x2; |
| uint32_t errcorr; |
| uint32_t index_frac; |
| real_t retval; |
| int32_t whole = (val >> REAL_BITS); |
| |
| /* rest = [0..1] */ |
| int32_t rest = val - (whole << REAL_BITS); |
| |
| /* index into pow2_tab */ |
| int32_t index = rest >> (REAL_BITS - TABLE_BITS); |
| |
| |
| if (val == 0) { |
| return 1; |
| } |
| |
| /* leave INTERP_BITS bits */ |
| index_frac = rest >> (REAL_BITS - TABLE_BITS - INTERP_BITS); |
| index_frac = index_frac & ((1 << INTERP_BITS) - 1); |
| |
| if (whole > 0) { |
| retval = 1 << whole; |
| } else { |
| retval = 0; |
| } |
| |
| x1 = pow2_tab[index & ((1 << TABLE_BITS) - 1)]; |
| x2 = pow2_tab[(index & ((1 << TABLE_BITS) - 1)) + 1]; |
| errcorr = ((index_frac * (x2 - x1))) >> INTERP_BITS; |
| |
| retval = MUL_R(retval, (errcorr + x1)); |
| |
| return retval; |
| } |
| |
| /* ld(x) = ld(x*y/y) = ld(x/y) + ld(y), with y=2^N and [1 <= (x/y) < 2] */ |
| int32_t log2_int(uint32_t val) |
| { |
| uint32_t frac; |
| uint32_t whole = (val); |
| int32_t exp = 0; |
| uint32_t index; |
| uint32_t index_frac; |
| uint32_t x1, x2; |
| uint32_t errcorr; |
| |
| /* error */ |
| if (val == 0) { |
| return -10000; |
| } |
| |
| exp = floor_log2(val); |
| exp -= REAL_BITS; |
| |
| /* frac = [1..2] */ |
| if (exp >= 0) { |
| frac = val >> exp; |
| } else { |
| frac = val << -exp; |
| } |
| |
| /* index in the log2 table */ |
| index = frac >> (REAL_BITS - TABLE_BITS); |
| |
| /* leftover part for linear interpolation */ |
| index_frac = frac & ((1 << (REAL_BITS - TABLE_BITS)) - 1); |
| |
| /* leave INTERP_BITS bits */ |
| index_frac = index_frac >> (REAL_BITS - TABLE_BITS - INTERP_BITS); |
| |
| x1 = log2_tab[index & ((1 << TABLE_BITS) - 1)]; |
| x2 = log2_tab[(index & ((1 << TABLE_BITS) - 1)) + 1]; |
| |
| /* linear interpolation */ |
| /* retval = exp + ((index_frac)*x2 + (1-index_frac)*x1) */ |
| |
| errcorr = (index_frac * (x2 - x1)) >> INTERP_BITS; |
| |
| return ((exp + REAL_BITS) << REAL_BITS) + errcorr + x1; |
| } |
| |
| /* ld(x) = ld(x*y/y) = ld(x/y) + ld(y), with y=2^N and [1 <= (x/y) < 2] */ |
| real_t log2_fix(uint32_t val) |
| { |
| uint32_t frac; |
| uint32_t whole = (val >> REAL_BITS); |
| int8_t exp = 0; |
| uint32_t index; |
| uint32_t index_frac; |
| uint32_t x1, x2; |
| uint32_t errcorr; |
| |
| /* error */ |
| if (val == 0) { |
| return -100000; |
| } |
| |
| exp = floor_log2(val); |
| exp -= REAL_BITS; |
| |
| /* frac = [1..2] */ |
| if (exp >= 0) { |
| frac = val >> exp; |
| } else { |
| frac = val << -exp; |
| } |
| |
| /* index in the log2 table */ |
| index = frac >> (REAL_BITS - TABLE_BITS); |
| |
| /* leftover part for linear interpolation */ |
| index_frac = frac & ((1 << (REAL_BITS - TABLE_BITS)) - 1); |
| |
| /* leave INTERP_BITS bits */ |
| index_frac = index_frac >> (REAL_BITS - TABLE_BITS - INTERP_BITS); |
| |
| x1 = log2_tab[index & ((1 << TABLE_BITS) - 1)]; |
| x2 = log2_tab[(index & ((1 << TABLE_BITS) - 1)) + 1]; |
| |
| /* linear interpolation */ |
| /* retval = exp + ((index_frac)*x2 + (1-index_frac)*x1) */ |
| |
| errcorr = (index_frac * (x2 - x1)) >> INTERP_BITS; |
| |
| return (exp << REAL_BITS) + errcorr + x1; |
| } |
| #endif |