blob: 784f90907af100428d438e402293c73ae388b955 [file] [log] [blame]
/* ***** BEGIN LICENSE BLOCK *****
* Source last modified: $Id: sbrmath.c,v 1.1 2005/02/26 01:47:35 jrecker Exp $
*
* Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file,
* are subject to the current version of the RealNetworks Public
* Source License (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the current version of the RealNetworks Community
* Source License (the "RCSL") available at
* http://www.helixcommunity.org/content/rcsl, in which case the RCSL
* will apply. You may also obtain the license terms directly from
* RealNetworks. You may not use this file except in compliance with
* the RPSL or, if you have a valid RCSL with RealNetworks applicable
* to this file, the RCSL. Please see the applicable RPSL or RCSL for
* the rights, obligations and limitations governing use of the
* contents of the file.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the
* portions it created.
*
* This file, and the files included with this file, is distributed
* and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
* KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
* ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
* ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
/**************************************************************************************
* Fixed-point HE-AAC decoder
* Jon Recker (jrecker@real.com)
* February 2005
*
* sbrmath.c - fixed-point math functions for SBR
**************************************************************************************/
#include "sbr.h"
#include "assembly.h"
#define Q28_2 0x20000000 /* Q28: 2.0 */
#define Q28_15 0x30000000 /* Q28: 1.5 */
#define NUM_ITER_IRN 5
/**************************************************************************************
* Function: InvRNormalized
*
* Description: use Newton's method to solve for x = 1/r
*
* Inputs: r = Q31, range = [0.5, 1) (normalize your inputs to this range)
*
* Outputs: none
*
* Return: x = Q29, range ~= [1.0, 2.0]
*
* Notes: guaranteed to converge and not overflow for any r in [0.5, 1)
*
* xn+1 = xn - f(xn)/f'(xn)
* f(x) = 1/r - x = 0 (find root)
* = 1/x - r
* f'(x) = -1/x^2
*
* so xn+1 = xn - (1/xn - r) / (-1/xn^2)
* = xn * (2 - r*xn)
*
* NUM_ITER_IRN = 2, maxDiff = 6.2500e-02 (precision of about 4 bits)
* NUM_ITER_IRN = 3, maxDiff = 3.9063e-03 (precision of about 8 bits)
* NUM_ITER_IRN = 4, maxDiff = 1.5288e-05 (precision of about 16 bits)
* NUM_ITER_IRN = 5, maxDiff = 3.0034e-08 (precision of about 24 bits)
**************************************************************************************/
int InvRNormalized(int r)
{
int i, xn, t;
/* r = [0.5, 1.0)
* 1/r = (1.0, 2.0]
* so use 1.5 as initial guess
*/
xn = Q28_15;
/* xn = xn*(2.0 - r*xn) */
for (i = NUM_ITER_IRN; i != 0; i--) {
t = MULSHIFT32(r, xn); /* Q31*Q29 = Q28 */
t = Q28_2 - t; /* Q28 */
xn = MULSHIFT32(xn, t) << 4; /* Q29*Q28 << 4 = Q29 */
}
return xn;
}
#define NUM_TERMS_RPI 5
#define LOG2_EXP_INV 0x58b90bfc /* 1/log2(e), Q31 */
/* invTab[x] = 1/(x+1), format = Q30 */
static const int invTab[NUM_TERMS_RPI] = {0x40000000, 0x20000000, 0x15555555, 0x10000000, 0x0ccccccd};
/**************************************************************************************
* Function: RatioPowInv
*
* Description: use Taylor (MacLaurin) series expansion to calculate (a/b) ^ (1/c)
*
* Inputs: a = [1, 64], b = [1, 64], c = [1, 64], a >= b
*
* Outputs: none
*
* Return: y = Q24, range ~= [0.015625, 64]
**************************************************************************************/
int RatioPowInv(int a, int b, int c)
{
int lna, lnb, i, p, t, y;
if (a < 1 || b < 1 || c < 1 || a > 64 || b > 64 || c > 64 || a < b) {
return 0;
}
lna = MULSHIFT32(log2Tab[a], LOG2_EXP_INV) << 1; /* ln(a), Q28 */
lnb = MULSHIFT32(log2Tab[b], LOG2_EXP_INV) << 1; /* ln(b), Q28 */
p = (lna - lnb) / c; /* Q28 */
/* sum in Q24 */
y = (1 << 24);
t = p >> 4; /* t = p^1 * 1/1! (Q24)*/
y += t;
for (i = 2; i <= NUM_TERMS_RPI; i++) {
t = MULSHIFT32(invTab[i - 1], t) << 2;
t = MULSHIFT32(p, t) << 4; /* t = p^i * 1/i! (Q24) */
y += t;
}
return y;
}
/**************************************************************************************
* Function: SqrtFix
*
* Description: use binary search to calculate sqrt(q)
*
* Inputs: q = Q30
* number of fraction bits in input
*
* Outputs: number of fraction bits in output
*
* Return: lo = Q(fBitsOut)
*
* Notes: absolute precision varies depending on fBitsIn
* normalizes input to range [0x200000000, 0x7fffffff] and takes
* floor(sqrt(input)), and sets fBitsOut appropriately
**************************************************************************************/
int SqrtFix(int q, int fBitsIn, int *fBitsOut)
{
int z, lo, hi, mid;
if (q <= 0) {
*fBitsOut = fBitsIn;
return 0;
}
/* force even fBitsIn */
z = fBitsIn & 0x01;
q >>= z;
fBitsIn -= z;
/* for max precision, normalize to [0x20000000, 0x7fffffff] */
z = (CLZ(q) - 1);
z >>= 1;
q <<= (2 * z);
/* choose initial bounds */
lo = 1;
if (q >= 0x10000000) {
lo = 16384; /* (int)sqrt(0x10000000) */
}
hi = 46340; /* (int)sqrt(0x7fffffff) */
/* do binary search with 32x32->32 multiply test */
do {
mid = (lo + hi) >> 1;
if (mid * mid > q) {
hi = mid - 1;
} else {
lo = mid + 1;
}
} while (hi >= lo);
lo--;
*fBitsOut = ((fBitsIn + 2 * z) >> 1);
return lo;
}