| /* |
| ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding |
| ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com |
| ** |
| ** This program is free software; you can redistribute it and/or modify |
| ** it under the terms of the GNU General Public License as published by |
| ** the Free Software Foundation; either version 2 of the License, or |
| ** (at your option) any later version. |
| ** |
| ** This program is distributed in the hope that it will be useful, |
| ** but WITHOUT ANY WARRANTY; without even the implied warranty of |
| ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| ** GNU General Public License for more details. |
| ** |
| ** You should have received a copy of the GNU General Public License |
| ** along with this program; if not, write to the Free Software |
| ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| ** |
| ** Any non-GPL usage of this software or parts of this software is strictly |
| ** forbidden. |
| ** |
| ** The "appropriate copyright message" mentioned in section 2c of the GPLv2 |
| ** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" |
| ** |
| ** Commercial non-GPL licensing of this software is possible. |
| ** For more info contact Nero AG through Mpeg4AAClicense@nero.com. |
| ** |
| ** $Id: sbr_hfgen.c,v 1.26 2007/11/01 12:33:35 menno Exp $ |
| **/ |
| |
| /* High Frequency generation */ |
| |
| #include "common.h" |
| #include "structs.h" |
| |
| #ifdef SBR_DEC |
| |
| #include "sbr_syntax.h" |
| #include "sbr_hfgen.h" |
| #include "sbr_fbt.h" |
| |
| /* static function declarations */ |
| #ifdef SBR_LOW_POWER |
| static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], |
| complex_t *alpha_0, complex_t *alpha_1, real_t *rxx); |
| static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg); |
| #else |
| static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], |
| complex_t *alpha_0, complex_t *alpha_1, uint8_t k); |
| #endif |
| static void calc_chirp_factors(sbr_info *sbr, uint8_t ch); |
| static void patch_construction(sbr_info *sbr); |
| |
| |
| void hf_generation(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], |
| qmf_t Xhigh[MAX_NTSRHFG][64] |
| #ifdef SBR_LOW_POWER |
| , real_t *deg |
| #endif |
| , uint8_t ch) |
| { |
| uint8_t l, i, x; |
| ALIGN complex_t alpha_0[64], alpha_1[64]; |
| #ifdef SBR_LOW_POWER |
| ALIGN real_t rxx[64]; |
| #endif |
| |
| uint8_t offset = sbr->tHFAdj; |
| uint8_t first = sbr->t_E[ch][0]; |
| uint8_t last = sbr->t_E[ch][sbr->L_E[ch]]; |
| |
| calc_chirp_factors(sbr, ch); |
| |
| #ifdef SBR_LOW_POWER |
| memset(deg, 0, 64 * sizeof(real_t)); |
| #endif |
| |
| if ((ch == 0) && (sbr->Reset)) { |
| patch_construction(sbr); |
| } |
| |
| /* calculate the prediction coefficients */ |
| #ifdef SBR_LOW_POWER |
| calc_prediction_coef_lp(sbr, Xlow, alpha_0, alpha_1, rxx); |
| calc_aliasing_degree(sbr, rxx, deg); |
| #endif |
| |
| /* actual HF generation */ |
| for (i = 0; i < sbr->noPatches; i++) { |
| for (x = 0; x < sbr->patchNoSubbands[i]; x++) { |
| real_t a0_r, a0_i, a1_r, a1_i; |
| real_t bw, bw2; |
| uint8_t q, p, k, g; |
| |
| /* find the low and high band for patching */ |
| k = sbr->kx + x; |
| for (q = 0; q < i; q++) { |
| k += sbr->patchNoSubbands[q]; |
| } |
| p = sbr->patchStartSubband[i] + x; |
| |
| #ifdef SBR_LOW_POWER |
| if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/) { |
| deg[k] = deg[p]; |
| } else { |
| deg[k] = 0; |
| } |
| #endif |
| |
| g = sbr->table_map_k_to_g[k]; |
| |
| bw = sbr->bwArray[ch][g]; |
| bw2 = MUL_C(bw, bw); |
| |
| /* do the patching */ |
| /* with or without filtering */ |
| if (bw2 > 0) { |
| real_t temp1_r, temp2_r, temp3_r; |
| #ifndef SBR_LOW_POWER |
| real_t temp1_i, temp2_i, temp3_i; |
| calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1, p); |
| #endif |
| |
| a0_r = MUL_C(RE(alpha_0[p]), bw); |
| a1_r = MUL_C(RE(alpha_1[p]), bw2); |
| #ifndef SBR_LOW_POWER |
| a0_i = MUL_C(IM(alpha_0[p]), bw); |
| a1_i = MUL_C(IM(alpha_1[p]), bw2); |
| #endif |
| |
| temp2_r = QMF_RE(Xlow[first - 2 + offset][p]); |
| temp3_r = QMF_RE(Xlow[first - 1 + offset][p]); |
| #ifndef SBR_LOW_POWER |
| temp2_i = QMF_IM(Xlow[first - 2 + offset][p]); |
| temp3_i = QMF_IM(Xlow[first - 1 + offset][p]); |
| #endif |
| for (l = first; l < last; l++) { |
| temp1_r = temp2_r; |
| temp2_r = temp3_r; |
| temp3_r = QMF_RE(Xlow[l + offset][p]); |
| #ifndef SBR_LOW_POWER |
| temp1_i = temp2_i; |
| temp2_i = temp3_i; |
| temp3_i = QMF_IM(Xlow[l + offset][p]); |
| #endif |
| |
| #ifdef SBR_LOW_POWER |
| QMF_RE(Xhigh[l + offset][k]) = |
| temp3_r |
| + (MUL_R(a0_r, temp2_r) + |
| MUL_R(a1_r, temp1_r)); |
| #else |
| QMF_RE(Xhigh[l + offset][k]) = |
| temp3_r |
| + (MUL_R(a0_r, temp2_r) - |
| MUL_R(a0_i, temp2_i) + |
| MUL_R(a1_r, temp1_r) - |
| MUL_R(a1_i, temp1_i)); |
| QMF_IM(Xhigh[l + offset][k]) = |
| temp3_i |
| + (MUL_R(a0_i, temp2_r) + |
| MUL_R(a0_r, temp2_i) + |
| MUL_R(a1_i, temp1_r) + |
| MUL_R(a1_r, temp1_i)); |
| #endif |
| } |
| } else { |
| for (l = first; l < last; l++) { |
| QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]); |
| #ifndef SBR_LOW_POWER |
| QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]); |
| #endif |
| } |
| } |
| } |
| } |
| |
| if (sbr->Reset) { |
| limiter_frequency_table(sbr); |
| } |
| } |
| |
| typedef struct { |
| complex_t r01; |
| complex_t r02; |
| complex_t r11; |
| complex_t r12; |
| complex_t r22; |
| real_t det; |
| } acorr_coef; |
| |
| #ifdef SBR_LOW_POWER |
| static void auto_correlation(sbr_info *sbr, acorr_coef *ac, |
| qmf_t buffer[MAX_NTSRHFG][64], |
| uint8_t bd, uint8_t len) |
| { |
| real_t r01 = 0, r02 = 0, r11 = 0; |
| int8_t j; |
| uint8_t offset = sbr->tHFAdj; |
| #ifdef FIXED_POINT |
| const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f); |
| uint32_t maxi = 0; |
| uint32_t pow2, exp; |
| #else |
| const real_t rel = 1 / (1 + 1e-6f); |
| #endif |
| |
| |
| #ifdef FIXED_POINT |
| mask = 0; |
| |
| for (j = (offset - 2); j < (len + offset); j++) { |
| real_t x; |
| x = QMF_RE(buffer[j][bd]) >> REAL_BITS; |
| mask |= x ^(x >> 31); |
| } |
| |
| exp = wl_min_lzc(mask); |
| |
| /* improves accuracy */ |
| if (exp > 0) { |
| exp -= 1; |
| } |
| |
| for (j = offset; j < len + offset; j++) { |
| real_t buf_j = ((QMF_RE(buffer[j][bd]) + (1 << (exp - 1))) >> exp); |
| real_t buf_j_1 = ((QMF_RE(buffer[j - 1][bd]) + (1 << (exp - 1))) >> exp); |
| real_t buf_j_2 = ((QMF_RE(buffer[j - 2][bd]) + (1 << (exp - 1))) >> exp); |
| |
| /* normalisation with rounding */ |
| r01 += MUL_R(buf_j, buf_j_1); |
| r02 += MUL_R(buf_j, buf_j_2); |
| r11 += MUL_R(buf_j_1, buf_j_1); |
| } |
| RE(ac->r12) = r01 - |
| MUL_R(((QMF_RE(buffer[len + offset - 1][bd]) + (1 << (exp - 1))) >> exp), ((QMF_RE(buffer[len + offset - 2][bd]) + (1 << (exp - 1))) >> exp)) + |
| MUL_R(((QMF_RE(buffer[offset - 1][bd]) + (1 << (exp - 1))) >> exp), ((QMF_RE(buffer[offset - 2][bd]) + (1 << (exp - 1))) >> exp)); |
| RE(ac->r22) = r11 - |
| MUL_R(((QMF_RE(buffer[len + offset - 2][bd]) + (1 << (exp - 1))) >> exp), ((QMF_RE(buffer[len + offset - 2][bd]) + (1 << (exp - 1))) >> exp)) + |
| MUL_R(((QMF_RE(buffer[offset - 2][bd]) + (1 << (exp - 1))) >> exp), ((QMF_RE(buffer[offset - 2][bd]) + (1 << (exp - 1))) >> exp)); |
| #else |
| for (j = offset; j < len + offset; j++) { |
| r01 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j - 1][bd]); |
| r02 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j - 2][bd]); |
| r11 += QMF_RE(buffer[j - 1][bd]) * QMF_RE(buffer[j - 1][bd]); |
| } |
| RE(ac->r12) = r01 - |
| QMF_RE(buffer[len + offset - 1][bd]) * QMF_RE(buffer[len + offset - 2][bd]) + |
| QMF_RE(buffer[offset - 1][bd]) * QMF_RE(buffer[offset - 2][bd]); |
| RE(ac->r22) = r11 - |
| QMF_RE(buffer[len + offset - 2][bd]) * QMF_RE(buffer[len + offset - 2][bd]) + |
| QMF_RE(buffer[offset - 2][bd]) * QMF_RE(buffer[offset - 2][bd]); |
| #endif |
| RE(ac->r01) = r01; |
| RE(ac->r02) = r02; |
| RE(ac->r11) = r11; |
| |
| ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_F(MUL_R(RE(ac->r12), RE(ac->r12)), rel); |
| } |
| #else |
| static void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTSRHFG][64], |
| uint8_t bd, uint8_t len) |
| { |
| real_t r01r = 0, r01i = 0, r02r = 0, r02i = 0, r11r = 0; |
| real_t temp1_r, temp1_i, temp2_r, temp2_i, temp3_r, temp3_i, temp4_r, temp4_i, temp5_r, temp5_i; |
| #ifdef FIXED_POINT |
| const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f); |
| uint32_t mask, exp; |
| real_t pow2_to_exp; |
| #else |
| const real_t rel = 1 / (1 + 1e-6f); |
| #endif |
| int8_t j; |
| uint8_t offset = sbr->tHFAdj; |
| |
| #ifdef FIXED_POINT |
| mask = 0; |
| |
| for (j = (offset - 2); j < (len + offset); j++) { |
| real_t x; |
| x = QMF_RE(buffer[j][bd]) >> REAL_BITS; |
| mask |= x ^(x >> 31); |
| x = QMF_IM(buffer[j][bd]) >> REAL_BITS; |
| mask |= x ^(x >> 31); |
| } |
| |
| exp = wl_min_lzc(mask); |
| |
| /* improves accuracy */ |
| if (exp > 0) { |
| exp -= 1; |
| } |
| |
| pow2_to_exp = 1 << (exp - 1); |
| |
| temp2_r = (QMF_RE(buffer[offset - 2][bd]) + pow2_to_exp) >> exp; |
| temp2_i = (QMF_IM(buffer[offset - 2][bd]) + pow2_to_exp) >> exp; |
| temp3_r = (QMF_RE(buffer[offset - 1][bd]) + pow2_to_exp) >> exp; |
| temp3_i = (QMF_IM(buffer[offset - 1][bd]) + pow2_to_exp) >> exp; |
| // Save these because they are needed after loop |
| temp4_r = temp2_r; |
| temp4_i = temp2_i; |
| temp5_r = temp3_r; |
| temp5_i = temp3_i; |
| |
| for (j = offset; j < len + offset; j++) { |
| temp1_r = temp2_r; // temp1_r = (QMF_RE(buffer[offset-2][bd] + (1<<(exp-1))) >> exp; |
| temp1_i = temp2_i; // temp1_i = (QMF_IM(buffer[offset-2][bd] + (1<<(exp-1))) >> exp; |
| temp2_r = temp3_r; // temp2_r = (QMF_RE(buffer[offset-1][bd] + (1<<(exp-1))) >> exp; |
| temp2_i = temp3_i; // temp2_i = (QMF_IM(buffer[offset-1][bd] + (1<<(exp-1))) >> exp; |
| temp3_r = (QMF_RE(buffer[j][bd]) + pow2_to_exp) >> exp; |
| temp3_i = (QMF_IM(buffer[j][bd]) + pow2_to_exp) >> exp; |
| r01r += MUL_R(temp3_r, temp2_r) + MUL_R(temp3_i, temp2_i); |
| r01i += MUL_R(temp3_i, temp2_r) - MUL_R(temp3_r, temp2_i); |
| r02r += MUL_R(temp3_r, temp1_r) + MUL_R(temp3_i, temp1_i); |
| r02i += MUL_R(temp3_i, temp1_r) - MUL_R(temp3_r, temp1_i); |
| r11r += MUL_R(temp2_r, temp2_r) + MUL_R(temp2_i, temp2_i); |
| } |
| |
| // These are actual values in temporary variable at this point |
| // temp1_r = (QMF_RE(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp; |
| // temp1_i = (QMF_IM(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp; |
| // temp2_r = (QMF_RE(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp; |
| // temp2_i = (QMF_IM(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp; |
| // temp3_r = (QMF_RE(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp; |
| // temp3_i = (QMF_IM(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp; |
| // temp4_r = (QMF_RE(buffer[offset-2][bd]) + (1<<(exp-1))) >> exp; |
| // temp4_i = (QMF_IM(buffer[offset-2][bd]) + (1<<(exp-1))) >> exp; |
| // temp5_r = (QMF_RE(buffer[offset-1][bd]) + (1<<(exp-1))) >> exp; |
| // temp5_i = (QMF_IM(buffer[offset-1][bd]) + (1<<(exp-1))) >> exp; |
| |
| RE(ac->r12) = r01r - |
| (MUL_R(temp3_r, temp2_r) + MUL_R(temp3_i, temp2_i)) + |
| (MUL_R(temp5_r, temp4_r) + MUL_R(temp5_i, temp4_i)); |
| IM(ac->r12) = r01i - |
| (MUL_R(temp3_i, temp2_r) - MUL_R(temp3_r, temp2_i)) + |
| (MUL_R(temp5_i, temp4_r) - MUL_R(temp5_r, temp4_i)); |
| RE(ac->r22) = r11r - |
| (MUL_R(temp2_r, temp2_r) + MUL_R(temp2_i, temp2_i)) + |
| (MUL_R(temp4_r, temp4_r) + MUL_R(temp4_i, temp4_i)); |
| |
| #else |
| |
| temp2_r = QMF_RE(buffer[offset - 2][bd]); |
| temp2_i = QMF_IM(buffer[offset - 2][bd]); |
| temp3_r = QMF_RE(buffer[offset - 1][bd]); |
| temp3_i = QMF_IM(buffer[offset - 1][bd]); |
| // Save these because they are needed after loop |
| temp4_r = temp2_r; |
| temp4_i = temp2_i; |
| temp5_r = temp3_r; |
| temp5_i = temp3_i; |
| |
| for (j = offset; j < len + offset; j++) { |
| temp1_r = temp2_r; // temp1_r = QMF_RE(buffer[j-2][bd]; |
| temp1_i = temp2_i; // temp1_i = QMF_IM(buffer[j-2][bd]; |
| temp2_r = temp3_r; // temp2_r = QMF_RE(buffer[j-1][bd]; |
| temp2_i = temp3_i; // temp2_i = QMF_IM(buffer[j-1][bd]; |
| temp3_r = QMF_RE(buffer[j][bd]); |
| temp3_i = QMF_IM(buffer[j][bd]); |
| r01r += temp3_r * temp2_r + temp3_i * temp2_i; |
| r01i += temp3_i * temp2_r - temp3_r * temp2_i; |
| r02r += temp3_r * temp1_r + temp3_i * temp1_i; |
| r02i += temp3_i * temp1_r - temp3_r * temp1_i; |
| r11r += temp2_r * temp2_r + temp2_i * temp2_i; |
| } |
| |
| // These are actual values in temporary variable at this point |
| // temp1_r = QMF_RE(buffer[len+offset-1-2][bd]; |
| // temp1_i = QMF_IM(buffer[len+offset-1-2][bd]; |
| // temp2_r = QMF_RE(buffer[len+offset-1-1][bd]; |
| // temp2_i = QMF_IM(buffer[len+offset-1-1][bd]; |
| // temp3_r = QMF_RE(buffer[len+offset-1][bd]); |
| // temp3_i = QMF_IM(buffer[len+offset-1][bd]); |
| // temp4_r = QMF_RE(buffer[offset-2][bd]); |
| // temp4_i = QMF_IM(buffer[offset-2][bd]); |
| // temp5_r = QMF_RE(buffer[offset-1][bd]); |
| // temp5_i = QMF_IM(buffer[offset-1][bd]); |
| |
| RE(ac->r12) = r01r - |
| (temp3_r * temp2_r + temp3_i * temp2_i) + |
| (temp5_r * temp4_r + temp5_i * temp4_i); |
| IM(ac->r12) = r01i - |
| (temp3_i * temp2_r - temp3_r * temp2_i) + |
| (temp5_i * temp4_r - temp5_r * temp4_i); |
| RE(ac->r22) = r11r - |
| (temp2_r * temp2_r + temp2_i * temp2_i) + |
| (temp4_r * temp4_r + temp4_i * temp4_i); |
| |
| #endif |
| |
| RE(ac->r01) = r01r; |
| IM(ac->r01) = r01i; |
| RE(ac->r02) = r02r; |
| IM(ac->r02) = r02i; |
| RE(ac->r11) = r11r; |
| |
| ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_F(rel, (MUL_R(RE(ac->r12), RE(ac->r12)) + MUL_R(IM(ac->r12), IM(ac->r12)))); |
| } |
| #endif |
| |
| /* calculate linear prediction coefficients using the covariance method */ |
| #ifndef SBR_LOW_POWER |
| static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], |
| complex_t *alpha_0, complex_t *alpha_1, uint8_t k) |
| { |
| real_t tmp; |
| acorr_coef ac; |
| |
| auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); |
| |
| if (ac.det == 0) { |
| RE(alpha_1[k]) = 0; |
| IM(alpha_1[k]) = 0; |
| } else { |
| #ifdef FIXED_POINT |
| tmp = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11))); |
| RE(alpha_1[k]) = DIV_R(tmp, ac.det); |
| tmp = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11))); |
| IM(alpha_1[k]) = DIV_R(tmp, ac.det); |
| #else |
| tmp = REAL_CONST(1.0) / ac.det; |
| RE(alpha_1[k]) = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11))) * tmp; |
| IM(alpha_1[k]) = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11))) * tmp; |
| #endif |
| } |
| |
| if (RE(ac.r11) == 0) { |
| RE(alpha_0[k]) = 0; |
| IM(alpha_0[k]) = 0; |
| } else { |
| #ifdef FIXED_POINT |
| tmp = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12))); |
| RE(alpha_0[k]) = DIV_R(tmp, RE(ac.r11)); |
| tmp = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12))); |
| IM(alpha_0[k]) = DIV_R(tmp, RE(ac.r11)); |
| #else |
| tmp = 1.0f / RE(ac.r11); |
| RE(alpha_0[k]) = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12))) * tmp; |
| IM(alpha_0[k]) = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12))) * tmp; |
| #endif |
| } |
| |
| if ((MUL_R(RE(alpha_0[k]), RE(alpha_0[k])) + MUL_R(IM(alpha_0[k]), IM(alpha_0[k])) >= REAL_CONST(16)) || |
| (MUL_R(RE(alpha_1[k]), RE(alpha_1[k])) + MUL_R(IM(alpha_1[k]), IM(alpha_1[k])) >= REAL_CONST(16))) { |
| RE(alpha_0[k]) = 0; |
| IM(alpha_0[k]) = 0; |
| RE(alpha_1[k]) = 0; |
| IM(alpha_1[k]) = 0; |
| } |
| } |
| #else |
| static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], |
| complex_t *alpha_0, complex_t *alpha_1, real_t *rxx) |
| { |
| uint8_t k; |
| real_t tmp; |
| acorr_coef ac; |
| |
| for (k = 1; k < sbr->f_master[0]; k++) { |
| auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); |
| |
| if (ac.det == 0) { |
| RE(alpha_0[k]) = 0; |
| RE(alpha_1[k]) = 0; |
| } else { |
| tmp = MUL_R(RE(ac.r01), RE(ac.r22)) - MUL_R(RE(ac.r12), RE(ac.r02)); |
| RE(alpha_0[k]) = DIV_R(tmp, (-ac.det)); |
| |
| tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11)); |
| RE(alpha_1[k]) = DIV_R(tmp, ac.det); |
| } |
| |
| if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4))) { |
| RE(alpha_0[k]) = REAL_CONST(0); |
| RE(alpha_1[k]) = REAL_CONST(0); |
| } |
| |
| /* reflection coefficient */ |
| if (RE(ac.r11) == 0) { |
| rxx[k] = COEF_CONST(0.0); |
| } else { |
| rxx[k] = DIV_C(RE(ac.r01), RE(ac.r11)); |
| rxx[k] = -rxx[k]; |
| if (rxx[k] > COEF_CONST(1.0)) { |
| rxx[k] = COEF_CONST(1.0); |
| } |
| if (rxx[k] < COEF_CONST(-1.0)) { |
| rxx[k] = COEF_CONST(-1.0); |
| } |
| } |
| } |
| } |
| |
| static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg) |
| { |
| uint8_t k; |
| |
| rxx[0] = COEF_CONST(0.0); |
| deg[1] = COEF_CONST(0.0); |
| |
| for (k = 2; k < sbr->k0; k++) { |
| deg[k] = 0.0; |
| |
| if ((k % 2 == 0) && (rxx[k] < COEF_CONST(0.0))) { |
| if (rxx[k - 1] < 0.0) { |
| deg[k] = COEF_CONST(1.0); |
| |
| if (rxx[k - 2] > COEF_CONST(0.0)) { |
| deg[k - 1] = COEF_CONST(1.0) - MUL_C(rxx[k - 1], rxx[k - 1]); |
| } |
| } else if (rxx[k - 2] > COEF_CONST(0.0)) { |
| deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k - 1], rxx[k - 1]); |
| } |
| } |
| |
| if ((k % 2 == 1) && (rxx[k] > COEF_CONST(0.0))) { |
| if (rxx[k - 1] > COEF_CONST(0.0)) { |
| deg[k] = COEF_CONST(1.0); |
| |
| if (rxx[k - 2] < COEF_CONST(0.0)) { |
| deg[k - 1] = COEF_CONST(1.0) - MUL_C(rxx[k - 1], rxx[k - 1]); |
| } |
| } else if (rxx[k - 2] < COEF_CONST(0.0)) { |
| deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k - 1], rxx[k - 1]); |
| } |
| } |
| } |
| } |
| #endif |
| |
| /* FIXED POINT: bwArray = COEF */ |
| static real_t mapNewBw(uint8_t invf_mode, uint8_t invf_mode_prev) |
| { |
| switch (invf_mode) { |
| case 1: /* LOW */ |
| if (invf_mode_prev == 0) { /* NONE */ |
| return COEF_CONST(0.6); |
| } else { |
| return COEF_CONST(0.75); |
| } |
| |
| case 2: /* MID */ |
| return COEF_CONST(0.9); |
| |
| case 3: /* HIGH */ |
| return COEF_CONST(0.98); |
| |
| default: /* NONE */ |
| if (invf_mode_prev == 1) { /* LOW */ |
| return COEF_CONST(0.6); |
| } else { |
| return COEF_CONST(0.0); |
| } |
| } |
| } |
| |
| /* FIXED POINT: bwArray = COEF */ |
| static void calc_chirp_factors(sbr_info *sbr, uint8_t ch) |
| { |
| uint8_t i; |
| |
| for (i = 0; i < sbr->N_Q; i++) { |
| sbr->bwArray[ch][i] = mapNewBw(sbr->bs_invf_mode[ch][i], sbr->bs_invf_mode_prev[ch][i]); |
| |
| if (sbr->bwArray[ch][i] < sbr->bwArray_prev[ch][i]) { |
| sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.75)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.25)); |
| } else { |
| sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.90625)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.09375)); |
| } |
| |
| if (sbr->bwArray[ch][i] < COEF_CONST(0.015625)) { |
| sbr->bwArray[ch][i] = COEF_CONST(0.0); |
| } |
| |
| if (sbr->bwArray[ch][i] >= COEF_CONST(0.99609375)) { |
| sbr->bwArray[ch][i] = COEF_CONST(0.99609375); |
| } |
| |
| sbr->bwArray_prev[ch][i] = sbr->bwArray[ch][i]; |
| sbr->bs_invf_mode_prev[ch][i] = sbr->bs_invf_mode[ch][i]; |
| } |
| } |
| |
| static void patch_construction(sbr_info *sbr) |
| { |
| uint8_t i, k; |
| uint8_t odd, sb; |
| uint8_t msb = sbr->k0; |
| uint8_t usb = sbr->kx; |
| uint8_t goalSbTab[] = { 21, 23, 32, 43, 46, 64, 85, 93, 128, 0, 0, 0 }; |
| /* (uint8_t)(2.048e6/sbr->sample_rate + 0.5); */ |
| uint8_t goalSb = goalSbTab[get_sr_index(sbr->sample_rate)]; |
| |
| sbr->noPatches = 0; |
| |
| if (goalSb < (sbr->kx + sbr->M)) { |
| for (i = 0, k = 0; sbr->f_master[i] < goalSb; i++) { |
| k = i + 1; |
| } |
| } else { |
| k = sbr->N_master; |
| } |
| |
| if (sbr->N_master == 0) { |
| sbr->noPatches = 0; |
| sbr->patchNoSubbands[0] = 0; |
| sbr->patchStartSubband[0] = 0; |
| |
| return; |
| } |
| |
| do { |
| uint8_t j = k + 1; |
| |
| do { |
| /*coverity[INTEGER_OVERFLOW]:As expected*/ |
| j--; |
| /*coverity[INTEGER_OVERFLOW]:As expected*/ |
| sb = sbr->f_master[j]; |
| odd = (sb - 2 + sbr->k0) % 2; |
| } while (sb > (sbr->k0 - 1 + msb - odd)); |
| |
| sbr->patchNoSubbands[sbr->noPatches] = max(sb - usb, 0); |
| sbr->patchStartSubband[sbr->noPatches] = sbr->k0 - odd - |
| sbr->patchNoSubbands[sbr->noPatches]; |
| |
| if (sbr->patchNoSubbands[sbr->noPatches] > 0) { |
| usb = sb; |
| msb = sb; |
| sbr->noPatches++; |
| } else { |
| msb = sbr->kx; |
| } |
| |
| if (sbr->f_master[k] - sb < 3) { |
| k = sbr->N_master; |
| } |
| } while (sb != (sbr->kx + sbr->M)); |
| |
| if ((sbr->patchNoSubbands[sbr->noPatches - 1] < 3) && (sbr->noPatches > 1)) { |
| sbr->noPatches--; |
| } |
| |
| sbr->noPatches = min(sbr->noPatches, 5); |
| } |
| |
| #endif |