xingri.gao | c18d447 | 2023-02-28 02:51:02 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding |
| 3 | ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com |
| 4 | ** |
| 5 | ** This program is free software; you can redistribute it and/or modify |
| 6 | ** it under the terms of the GNU General Public License as published by |
| 7 | ** the Free Software Foundation; either version 2 of the License, or |
| 8 | ** (at your option) any later version. |
| 9 | ** |
| 10 | ** This program is distributed in the hope that it will be useful, |
| 11 | ** but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | ** GNU General Public License for more details. |
| 14 | ** |
| 15 | ** You should have received a copy of the GNU General Public License |
| 16 | ** along with this program; if not, write to the Free Software |
| 17 | ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 18 | ** |
| 19 | ** Any non-GPL usage of this software or parts of this software is strictly |
| 20 | ** forbidden. |
| 21 | ** |
| 22 | ** The "appropriate copyright message" mentioned in section 2c of the GPLv2 |
| 23 | ** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" |
| 24 | ** |
| 25 | ** Commercial non-GPL licensing of this software is possible. |
| 26 | ** For more info contact Nero AG through Mpeg4AAClicense@nero.com. |
| 27 | ** |
| 28 | ** $Id: sbr_hfgen.c,v 1.26 2007/11/01 12:33:35 menno Exp $ |
| 29 | **/ |
| 30 | |
| 31 | /* High Frequency generation */ |
| 32 | |
| 33 | #include "common.h" |
| 34 | #include "structs.h" |
| 35 | |
| 36 | #ifdef SBR_DEC |
| 37 | |
| 38 | #include "sbr_syntax.h" |
| 39 | #include "sbr_hfgen.h" |
| 40 | #include "sbr_fbt.h" |
| 41 | |
| 42 | /* static function declarations */ |
| 43 | #ifdef SBR_LOW_POWER |
| 44 | static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], |
| 45 | complex_t *alpha_0, complex_t *alpha_1, real_t *rxx); |
| 46 | static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg); |
| 47 | #else |
| 48 | static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], |
| 49 | complex_t *alpha_0, complex_t *alpha_1, uint8_t k); |
| 50 | #endif |
| 51 | static void calc_chirp_factors(sbr_info *sbr, uint8_t ch); |
| 52 | static void patch_construction(sbr_info *sbr); |
| 53 | |
| 54 | |
| 55 | void hf_generation(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], |
| 56 | qmf_t Xhigh[MAX_NTSRHFG][64] |
| 57 | #ifdef SBR_LOW_POWER |
| 58 | , real_t *deg |
| 59 | #endif |
| 60 | , uint8_t ch) |
| 61 | { |
| 62 | uint8_t l, i, x; |
| 63 | ALIGN complex_t alpha_0[64], alpha_1[64]; |
| 64 | #ifdef SBR_LOW_POWER |
| 65 | ALIGN real_t rxx[64]; |
| 66 | #endif |
| 67 | |
| 68 | uint8_t offset = sbr->tHFAdj; |
| 69 | uint8_t first = sbr->t_E[ch][0]; |
| 70 | uint8_t last = sbr->t_E[ch][sbr->L_E[ch]]; |
| 71 | |
| 72 | calc_chirp_factors(sbr, ch); |
| 73 | |
| 74 | #ifdef SBR_LOW_POWER |
| 75 | memset(deg, 0, 64 * sizeof(real_t)); |
| 76 | #endif |
| 77 | |
| 78 | if ((ch == 0) && (sbr->Reset)) { |
| 79 | patch_construction(sbr); |
| 80 | } |
| 81 | |
| 82 | /* calculate the prediction coefficients */ |
| 83 | #ifdef SBR_LOW_POWER |
| 84 | calc_prediction_coef_lp(sbr, Xlow, alpha_0, alpha_1, rxx); |
| 85 | calc_aliasing_degree(sbr, rxx, deg); |
| 86 | #endif |
| 87 | |
| 88 | /* actual HF generation */ |
| 89 | for (i = 0; i < sbr->noPatches; i++) { |
| 90 | for (x = 0; x < sbr->patchNoSubbands[i]; x++) { |
| 91 | real_t a0_r, a0_i, a1_r, a1_i; |
| 92 | real_t bw, bw2; |
| 93 | uint8_t q, p, k, g; |
| 94 | |
| 95 | /* find the low and high band for patching */ |
| 96 | k = sbr->kx + x; |
| 97 | for (q = 0; q < i; q++) { |
| 98 | k += sbr->patchNoSubbands[q]; |
| 99 | } |
| 100 | p = sbr->patchStartSubband[i] + x; |
| 101 | |
| 102 | #ifdef SBR_LOW_POWER |
| 103 | if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/) { |
| 104 | deg[k] = deg[p]; |
| 105 | } else { |
| 106 | deg[k] = 0; |
| 107 | } |
| 108 | #endif |
| 109 | |
| 110 | g = sbr->table_map_k_to_g[k]; |
| 111 | |
| 112 | bw = sbr->bwArray[ch][g]; |
| 113 | bw2 = MUL_C(bw, bw); |
| 114 | |
| 115 | /* do the patching */ |
| 116 | /* with or without filtering */ |
| 117 | if (bw2 > 0) { |
| 118 | real_t temp1_r, temp2_r, temp3_r; |
| 119 | #ifndef SBR_LOW_POWER |
| 120 | real_t temp1_i, temp2_i, temp3_i; |
| 121 | calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1, p); |
| 122 | #endif |
| 123 | |
| 124 | a0_r = MUL_C(RE(alpha_0[p]), bw); |
| 125 | a1_r = MUL_C(RE(alpha_1[p]), bw2); |
| 126 | #ifndef SBR_LOW_POWER |
| 127 | a0_i = MUL_C(IM(alpha_0[p]), bw); |
| 128 | a1_i = MUL_C(IM(alpha_1[p]), bw2); |
| 129 | #endif |
| 130 | |
| 131 | temp2_r = QMF_RE(Xlow[first - 2 + offset][p]); |
| 132 | temp3_r = QMF_RE(Xlow[first - 1 + offset][p]); |
| 133 | #ifndef SBR_LOW_POWER |
| 134 | temp2_i = QMF_IM(Xlow[first - 2 + offset][p]); |
| 135 | temp3_i = QMF_IM(Xlow[first - 1 + offset][p]); |
| 136 | #endif |
| 137 | for (l = first; l < last; l++) { |
| 138 | temp1_r = temp2_r; |
| 139 | temp2_r = temp3_r; |
| 140 | temp3_r = QMF_RE(Xlow[l + offset][p]); |
| 141 | #ifndef SBR_LOW_POWER |
| 142 | temp1_i = temp2_i; |
| 143 | temp2_i = temp3_i; |
| 144 | temp3_i = QMF_IM(Xlow[l + offset][p]); |
| 145 | #endif |
| 146 | |
| 147 | #ifdef SBR_LOW_POWER |
| 148 | QMF_RE(Xhigh[l + offset][k]) = |
| 149 | temp3_r |
| 150 | + (MUL_R(a0_r, temp2_r) + |
| 151 | MUL_R(a1_r, temp1_r)); |
| 152 | #else |
| 153 | QMF_RE(Xhigh[l + offset][k]) = |
| 154 | temp3_r |
| 155 | + (MUL_R(a0_r, temp2_r) - |
| 156 | MUL_R(a0_i, temp2_i) + |
| 157 | MUL_R(a1_r, temp1_r) - |
| 158 | MUL_R(a1_i, temp1_i)); |
| 159 | QMF_IM(Xhigh[l + offset][k]) = |
| 160 | temp3_i |
| 161 | + (MUL_R(a0_i, temp2_r) + |
| 162 | MUL_R(a0_r, temp2_i) + |
| 163 | MUL_R(a1_i, temp1_r) + |
| 164 | MUL_R(a1_r, temp1_i)); |
| 165 | #endif |
| 166 | } |
| 167 | } else { |
| 168 | for (l = first; l < last; l++) { |
| 169 | QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]); |
| 170 | #ifndef SBR_LOW_POWER |
| 171 | QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]); |
| 172 | #endif |
| 173 | } |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | if (sbr->Reset) { |
| 179 | limiter_frequency_table(sbr); |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | typedef struct { |
| 184 | complex_t r01; |
| 185 | complex_t r02; |
| 186 | complex_t r11; |
| 187 | complex_t r12; |
| 188 | complex_t r22; |
| 189 | real_t det; |
| 190 | } acorr_coef; |
| 191 | |
| 192 | #ifdef SBR_LOW_POWER |
| 193 | static void auto_correlation(sbr_info *sbr, acorr_coef *ac, |
| 194 | qmf_t buffer[MAX_NTSRHFG][64], |
| 195 | uint8_t bd, uint8_t len) |
| 196 | { |
| 197 | real_t r01 = 0, r02 = 0, r11 = 0; |
| 198 | int8_t j; |
| 199 | uint8_t offset = sbr->tHFAdj; |
| 200 | #ifdef FIXED_POINT |
| 201 | const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f); |
| 202 | uint32_t maxi = 0; |
| 203 | uint32_t pow2, exp; |
| 204 | #else |
| 205 | const real_t rel = 1 / (1 + 1e-6f); |
| 206 | #endif |
| 207 | |
| 208 | |
| 209 | #ifdef FIXED_POINT |
| 210 | mask = 0; |
| 211 | |
| 212 | for (j = (offset - 2); j < (len + offset); j++) { |
| 213 | real_t x; |
| 214 | x = QMF_RE(buffer[j][bd]) >> REAL_BITS; |
| 215 | mask |= x ^(x >> 31); |
| 216 | } |
| 217 | |
| 218 | exp = wl_min_lzc(mask); |
| 219 | |
| 220 | /* improves accuracy */ |
| 221 | if (exp > 0) { |
| 222 | exp -= 1; |
| 223 | } |
| 224 | |
| 225 | for (j = offset; j < len + offset; j++) { |
| 226 | real_t buf_j = ((QMF_RE(buffer[j][bd]) + (1 << (exp - 1))) >> exp); |
| 227 | real_t buf_j_1 = ((QMF_RE(buffer[j - 1][bd]) + (1 << (exp - 1))) >> exp); |
| 228 | real_t buf_j_2 = ((QMF_RE(buffer[j - 2][bd]) + (1 << (exp - 1))) >> exp); |
| 229 | |
| 230 | /* normalisation with rounding */ |
| 231 | r01 += MUL_R(buf_j, buf_j_1); |
| 232 | r02 += MUL_R(buf_j, buf_j_2); |
| 233 | r11 += MUL_R(buf_j_1, buf_j_1); |
| 234 | } |
| 235 | RE(ac->r12) = r01 - |
| 236 | MUL_R(((QMF_RE(buffer[len + offset - 1][bd]) + (1 << (exp - 1))) >> exp), ((QMF_RE(buffer[len + offset - 2][bd]) + (1 << (exp - 1))) >> exp)) + |
| 237 | MUL_R(((QMF_RE(buffer[offset - 1][bd]) + (1 << (exp - 1))) >> exp), ((QMF_RE(buffer[offset - 2][bd]) + (1 << (exp - 1))) >> exp)); |
| 238 | RE(ac->r22) = r11 - |
| 239 | MUL_R(((QMF_RE(buffer[len + offset - 2][bd]) + (1 << (exp - 1))) >> exp), ((QMF_RE(buffer[len + offset - 2][bd]) + (1 << (exp - 1))) >> exp)) + |
| 240 | MUL_R(((QMF_RE(buffer[offset - 2][bd]) + (1 << (exp - 1))) >> exp), ((QMF_RE(buffer[offset - 2][bd]) + (1 << (exp - 1))) >> exp)); |
| 241 | #else |
| 242 | for (j = offset; j < len + offset; j++) { |
| 243 | r01 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j - 1][bd]); |
| 244 | r02 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j - 2][bd]); |
| 245 | r11 += QMF_RE(buffer[j - 1][bd]) * QMF_RE(buffer[j - 1][bd]); |
| 246 | } |
| 247 | RE(ac->r12) = r01 - |
| 248 | QMF_RE(buffer[len + offset - 1][bd]) * QMF_RE(buffer[len + offset - 2][bd]) + |
| 249 | QMF_RE(buffer[offset - 1][bd]) * QMF_RE(buffer[offset - 2][bd]); |
| 250 | RE(ac->r22) = r11 - |
| 251 | QMF_RE(buffer[len + offset - 2][bd]) * QMF_RE(buffer[len + offset - 2][bd]) + |
| 252 | QMF_RE(buffer[offset - 2][bd]) * QMF_RE(buffer[offset - 2][bd]); |
| 253 | #endif |
| 254 | RE(ac->r01) = r01; |
| 255 | RE(ac->r02) = r02; |
| 256 | RE(ac->r11) = r11; |
| 257 | |
| 258 | ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_F(MUL_R(RE(ac->r12), RE(ac->r12)), rel); |
| 259 | } |
| 260 | #else |
| 261 | static void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTSRHFG][64], |
| 262 | uint8_t bd, uint8_t len) |
| 263 | { |
| 264 | real_t r01r = 0, r01i = 0, r02r = 0, r02i = 0, r11r = 0; |
| 265 | real_t temp1_r, temp1_i, temp2_r, temp2_i, temp3_r, temp3_i, temp4_r, temp4_i, temp5_r, temp5_i; |
| 266 | #ifdef FIXED_POINT |
| 267 | const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f); |
| 268 | uint32_t mask, exp; |
| 269 | real_t pow2_to_exp; |
| 270 | #else |
| 271 | const real_t rel = 1 / (1 + 1e-6f); |
| 272 | #endif |
| 273 | int8_t j; |
| 274 | uint8_t offset = sbr->tHFAdj; |
| 275 | |
| 276 | #ifdef FIXED_POINT |
| 277 | mask = 0; |
| 278 | |
| 279 | for (j = (offset - 2); j < (len + offset); j++) { |
| 280 | real_t x; |
| 281 | x = QMF_RE(buffer[j][bd]) >> REAL_BITS; |
| 282 | mask |= x ^(x >> 31); |
| 283 | x = QMF_IM(buffer[j][bd]) >> REAL_BITS; |
| 284 | mask |= x ^(x >> 31); |
| 285 | } |
| 286 | |
| 287 | exp = wl_min_lzc(mask); |
| 288 | |
| 289 | /* improves accuracy */ |
| 290 | if (exp > 0) { |
| 291 | exp -= 1; |
| 292 | } |
| 293 | |
| 294 | pow2_to_exp = 1 << (exp - 1); |
| 295 | |
| 296 | temp2_r = (QMF_RE(buffer[offset - 2][bd]) + pow2_to_exp) >> exp; |
| 297 | temp2_i = (QMF_IM(buffer[offset - 2][bd]) + pow2_to_exp) >> exp; |
| 298 | temp3_r = (QMF_RE(buffer[offset - 1][bd]) + pow2_to_exp) >> exp; |
| 299 | temp3_i = (QMF_IM(buffer[offset - 1][bd]) + pow2_to_exp) >> exp; |
| 300 | // Save these because they are needed after loop |
| 301 | temp4_r = temp2_r; |
| 302 | temp4_i = temp2_i; |
| 303 | temp5_r = temp3_r; |
| 304 | temp5_i = temp3_i; |
| 305 | |
| 306 | for (j = offset; j < len + offset; j++) { |
| 307 | temp1_r = temp2_r; // temp1_r = (QMF_RE(buffer[offset-2][bd] + (1<<(exp-1))) >> exp; |
| 308 | temp1_i = temp2_i; // temp1_i = (QMF_IM(buffer[offset-2][bd] + (1<<(exp-1))) >> exp; |
| 309 | temp2_r = temp3_r; // temp2_r = (QMF_RE(buffer[offset-1][bd] + (1<<(exp-1))) >> exp; |
| 310 | temp2_i = temp3_i; // temp2_i = (QMF_IM(buffer[offset-1][bd] + (1<<(exp-1))) >> exp; |
| 311 | temp3_r = (QMF_RE(buffer[j][bd]) + pow2_to_exp) >> exp; |
| 312 | temp3_i = (QMF_IM(buffer[j][bd]) + pow2_to_exp) >> exp; |
| 313 | r01r += MUL_R(temp3_r, temp2_r) + MUL_R(temp3_i, temp2_i); |
| 314 | r01i += MUL_R(temp3_i, temp2_r) - MUL_R(temp3_r, temp2_i); |
| 315 | r02r += MUL_R(temp3_r, temp1_r) + MUL_R(temp3_i, temp1_i); |
| 316 | r02i += MUL_R(temp3_i, temp1_r) - MUL_R(temp3_r, temp1_i); |
| 317 | r11r += MUL_R(temp2_r, temp2_r) + MUL_R(temp2_i, temp2_i); |
| 318 | } |
| 319 | |
| 320 | // These are actual values in temporary variable at this point |
| 321 | // temp1_r = (QMF_RE(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp; |
| 322 | // temp1_i = (QMF_IM(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp; |
| 323 | // temp2_r = (QMF_RE(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp; |
| 324 | // temp2_i = (QMF_IM(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp; |
| 325 | // temp3_r = (QMF_RE(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp; |
| 326 | // temp3_i = (QMF_IM(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp; |
| 327 | // temp4_r = (QMF_RE(buffer[offset-2][bd]) + (1<<(exp-1))) >> exp; |
| 328 | // temp4_i = (QMF_IM(buffer[offset-2][bd]) + (1<<(exp-1))) >> exp; |
| 329 | // temp5_r = (QMF_RE(buffer[offset-1][bd]) + (1<<(exp-1))) >> exp; |
| 330 | // temp5_i = (QMF_IM(buffer[offset-1][bd]) + (1<<(exp-1))) >> exp; |
| 331 | |
| 332 | RE(ac->r12) = r01r - |
| 333 | (MUL_R(temp3_r, temp2_r) + MUL_R(temp3_i, temp2_i)) + |
| 334 | (MUL_R(temp5_r, temp4_r) + MUL_R(temp5_i, temp4_i)); |
| 335 | IM(ac->r12) = r01i - |
| 336 | (MUL_R(temp3_i, temp2_r) - MUL_R(temp3_r, temp2_i)) + |
| 337 | (MUL_R(temp5_i, temp4_r) - MUL_R(temp5_r, temp4_i)); |
| 338 | RE(ac->r22) = r11r - |
| 339 | (MUL_R(temp2_r, temp2_r) + MUL_R(temp2_i, temp2_i)) + |
| 340 | (MUL_R(temp4_r, temp4_r) + MUL_R(temp4_i, temp4_i)); |
| 341 | |
| 342 | #else |
| 343 | |
| 344 | temp2_r = QMF_RE(buffer[offset - 2][bd]); |
| 345 | temp2_i = QMF_IM(buffer[offset - 2][bd]); |
| 346 | temp3_r = QMF_RE(buffer[offset - 1][bd]); |
| 347 | temp3_i = QMF_IM(buffer[offset - 1][bd]); |
| 348 | // Save these because they are needed after loop |
| 349 | temp4_r = temp2_r; |
| 350 | temp4_i = temp2_i; |
| 351 | temp5_r = temp3_r; |
| 352 | temp5_i = temp3_i; |
| 353 | |
| 354 | for (j = offset; j < len + offset; j++) { |
| 355 | temp1_r = temp2_r; // temp1_r = QMF_RE(buffer[j-2][bd]; |
| 356 | temp1_i = temp2_i; // temp1_i = QMF_IM(buffer[j-2][bd]; |
| 357 | temp2_r = temp3_r; // temp2_r = QMF_RE(buffer[j-1][bd]; |
| 358 | temp2_i = temp3_i; // temp2_i = QMF_IM(buffer[j-1][bd]; |
| 359 | temp3_r = QMF_RE(buffer[j][bd]); |
| 360 | temp3_i = QMF_IM(buffer[j][bd]); |
| 361 | r01r += temp3_r * temp2_r + temp3_i * temp2_i; |
| 362 | r01i += temp3_i * temp2_r - temp3_r * temp2_i; |
| 363 | r02r += temp3_r * temp1_r + temp3_i * temp1_i; |
| 364 | r02i += temp3_i * temp1_r - temp3_r * temp1_i; |
| 365 | r11r += temp2_r * temp2_r + temp2_i * temp2_i; |
| 366 | } |
| 367 | |
| 368 | // These are actual values in temporary variable at this point |
| 369 | // temp1_r = QMF_RE(buffer[len+offset-1-2][bd]; |
| 370 | // temp1_i = QMF_IM(buffer[len+offset-1-2][bd]; |
| 371 | // temp2_r = QMF_RE(buffer[len+offset-1-1][bd]; |
| 372 | // temp2_i = QMF_IM(buffer[len+offset-1-1][bd]; |
| 373 | // temp3_r = QMF_RE(buffer[len+offset-1][bd]); |
| 374 | // temp3_i = QMF_IM(buffer[len+offset-1][bd]); |
| 375 | // temp4_r = QMF_RE(buffer[offset-2][bd]); |
| 376 | // temp4_i = QMF_IM(buffer[offset-2][bd]); |
| 377 | // temp5_r = QMF_RE(buffer[offset-1][bd]); |
| 378 | // temp5_i = QMF_IM(buffer[offset-1][bd]); |
| 379 | |
| 380 | RE(ac->r12) = r01r - |
| 381 | (temp3_r * temp2_r + temp3_i * temp2_i) + |
| 382 | (temp5_r * temp4_r + temp5_i * temp4_i); |
| 383 | IM(ac->r12) = r01i - |
| 384 | (temp3_i * temp2_r - temp3_r * temp2_i) + |
| 385 | (temp5_i * temp4_r - temp5_r * temp4_i); |
| 386 | RE(ac->r22) = r11r - |
| 387 | (temp2_r * temp2_r + temp2_i * temp2_i) + |
| 388 | (temp4_r * temp4_r + temp4_i * temp4_i); |
| 389 | |
| 390 | #endif |
| 391 | |
| 392 | RE(ac->r01) = r01r; |
| 393 | IM(ac->r01) = r01i; |
| 394 | RE(ac->r02) = r02r; |
| 395 | IM(ac->r02) = r02i; |
| 396 | RE(ac->r11) = r11r; |
| 397 | |
| 398 | ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_F(rel, (MUL_R(RE(ac->r12), RE(ac->r12)) + MUL_R(IM(ac->r12), IM(ac->r12)))); |
| 399 | } |
| 400 | #endif |
| 401 | |
| 402 | /* calculate linear prediction coefficients using the covariance method */ |
| 403 | #ifndef SBR_LOW_POWER |
| 404 | static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], |
| 405 | complex_t *alpha_0, complex_t *alpha_1, uint8_t k) |
| 406 | { |
| 407 | real_t tmp; |
| 408 | acorr_coef ac; |
| 409 | |
| 410 | auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); |
| 411 | |
| 412 | if (ac.det == 0) { |
| 413 | RE(alpha_1[k]) = 0; |
| 414 | IM(alpha_1[k]) = 0; |
| 415 | } else { |
| 416 | #ifdef FIXED_POINT |
| 417 | tmp = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11))); |
| 418 | RE(alpha_1[k]) = DIV_R(tmp, ac.det); |
| 419 | tmp = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11))); |
| 420 | IM(alpha_1[k]) = DIV_R(tmp, ac.det); |
| 421 | #else |
| 422 | tmp = REAL_CONST(1.0) / ac.det; |
| 423 | RE(alpha_1[k]) = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11))) * tmp; |
| 424 | IM(alpha_1[k]) = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11))) * tmp; |
| 425 | #endif |
| 426 | } |
| 427 | |
| 428 | if (RE(ac.r11) == 0) { |
| 429 | RE(alpha_0[k]) = 0; |
| 430 | IM(alpha_0[k]) = 0; |
| 431 | } else { |
| 432 | #ifdef FIXED_POINT |
| 433 | tmp = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12))); |
| 434 | RE(alpha_0[k]) = DIV_R(tmp, RE(ac.r11)); |
| 435 | tmp = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12))); |
| 436 | IM(alpha_0[k]) = DIV_R(tmp, RE(ac.r11)); |
| 437 | #else |
| 438 | tmp = 1.0f / RE(ac.r11); |
| 439 | RE(alpha_0[k]) = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12))) * tmp; |
| 440 | IM(alpha_0[k]) = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12))) * tmp; |
| 441 | #endif |
| 442 | } |
| 443 | |
| 444 | if ((MUL_R(RE(alpha_0[k]), RE(alpha_0[k])) + MUL_R(IM(alpha_0[k]), IM(alpha_0[k])) >= REAL_CONST(16)) || |
| 445 | (MUL_R(RE(alpha_1[k]), RE(alpha_1[k])) + MUL_R(IM(alpha_1[k]), IM(alpha_1[k])) >= REAL_CONST(16))) { |
| 446 | RE(alpha_0[k]) = 0; |
| 447 | IM(alpha_0[k]) = 0; |
| 448 | RE(alpha_1[k]) = 0; |
| 449 | IM(alpha_1[k]) = 0; |
| 450 | } |
| 451 | } |
| 452 | #else |
| 453 | static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], |
| 454 | complex_t *alpha_0, complex_t *alpha_1, real_t *rxx) |
| 455 | { |
| 456 | uint8_t k; |
| 457 | real_t tmp; |
| 458 | acorr_coef ac; |
| 459 | |
| 460 | for (k = 1; k < sbr->f_master[0]; k++) { |
| 461 | auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); |
| 462 | |
| 463 | if (ac.det == 0) { |
| 464 | RE(alpha_0[k]) = 0; |
| 465 | RE(alpha_1[k]) = 0; |
| 466 | } else { |
| 467 | tmp = MUL_R(RE(ac.r01), RE(ac.r22)) - MUL_R(RE(ac.r12), RE(ac.r02)); |
| 468 | RE(alpha_0[k]) = DIV_R(tmp, (-ac.det)); |
| 469 | |
| 470 | tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11)); |
| 471 | RE(alpha_1[k]) = DIV_R(tmp, ac.det); |
| 472 | } |
| 473 | |
| 474 | if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4))) { |
| 475 | RE(alpha_0[k]) = REAL_CONST(0); |
| 476 | RE(alpha_1[k]) = REAL_CONST(0); |
| 477 | } |
| 478 | |
| 479 | /* reflection coefficient */ |
| 480 | if (RE(ac.r11) == 0) { |
| 481 | rxx[k] = COEF_CONST(0.0); |
| 482 | } else { |
| 483 | rxx[k] = DIV_C(RE(ac.r01), RE(ac.r11)); |
| 484 | rxx[k] = -rxx[k]; |
| 485 | if (rxx[k] > COEF_CONST(1.0)) { |
| 486 | rxx[k] = COEF_CONST(1.0); |
| 487 | } |
| 488 | if (rxx[k] < COEF_CONST(-1.0)) { |
| 489 | rxx[k] = COEF_CONST(-1.0); |
| 490 | } |
| 491 | } |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg) |
| 496 | { |
| 497 | uint8_t k; |
| 498 | |
| 499 | rxx[0] = COEF_CONST(0.0); |
| 500 | deg[1] = COEF_CONST(0.0); |
| 501 | |
| 502 | for (k = 2; k < sbr->k0; k++) { |
| 503 | deg[k] = 0.0; |
| 504 | |
| 505 | if ((k % 2 == 0) && (rxx[k] < COEF_CONST(0.0))) { |
| 506 | if (rxx[k - 1] < 0.0) { |
| 507 | deg[k] = COEF_CONST(1.0); |
| 508 | |
| 509 | if (rxx[k - 2] > COEF_CONST(0.0)) { |
| 510 | deg[k - 1] = COEF_CONST(1.0) - MUL_C(rxx[k - 1], rxx[k - 1]); |
| 511 | } |
| 512 | } else if (rxx[k - 2] > COEF_CONST(0.0)) { |
| 513 | deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k - 1], rxx[k - 1]); |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | if ((k % 2 == 1) && (rxx[k] > COEF_CONST(0.0))) { |
| 518 | if (rxx[k - 1] > COEF_CONST(0.0)) { |
| 519 | deg[k] = COEF_CONST(1.0); |
| 520 | |
| 521 | if (rxx[k - 2] < COEF_CONST(0.0)) { |
| 522 | deg[k - 1] = COEF_CONST(1.0) - MUL_C(rxx[k - 1], rxx[k - 1]); |
| 523 | } |
| 524 | } else if (rxx[k - 2] < COEF_CONST(0.0)) { |
| 525 | deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k - 1], rxx[k - 1]); |
| 526 | } |
| 527 | } |
| 528 | } |
| 529 | } |
| 530 | #endif |
| 531 | |
| 532 | /* FIXED POINT: bwArray = COEF */ |
| 533 | static real_t mapNewBw(uint8_t invf_mode, uint8_t invf_mode_prev) |
| 534 | { |
| 535 | switch (invf_mode) { |
| 536 | case 1: /* LOW */ |
| 537 | if (invf_mode_prev == 0) { /* NONE */ |
| 538 | return COEF_CONST(0.6); |
| 539 | } else { |
| 540 | return COEF_CONST(0.75); |
| 541 | } |
| 542 | |
| 543 | case 2: /* MID */ |
| 544 | return COEF_CONST(0.9); |
| 545 | |
| 546 | case 3: /* HIGH */ |
| 547 | return COEF_CONST(0.98); |
| 548 | |
| 549 | default: /* NONE */ |
| 550 | if (invf_mode_prev == 1) { /* LOW */ |
| 551 | return COEF_CONST(0.6); |
| 552 | } else { |
| 553 | return COEF_CONST(0.0); |
| 554 | } |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | /* FIXED POINT: bwArray = COEF */ |
| 559 | static void calc_chirp_factors(sbr_info *sbr, uint8_t ch) |
| 560 | { |
| 561 | uint8_t i; |
| 562 | |
| 563 | for (i = 0; i < sbr->N_Q; i++) { |
| 564 | sbr->bwArray[ch][i] = mapNewBw(sbr->bs_invf_mode[ch][i], sbr->bs_invf_mode_prev[ch][i]); |
| 565 | |
| 566 | if (sbr->bwArray[ch][i] < sbr->bwArray_prev[ch][i]) { |
| 567 | sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.75)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.25)); |
| 568 | } else { |
| 569 | sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.90625)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.09375)); |
| 570 | } |
| 571 | |
| 572 | if (sbr->bwArray[ch][i] < COEF_CONST(0.015625)) { |
| 573 | sbr->bwArray[ch][i] = COEF_CONST(0.0); |
| 574 | } |
| 575 | |
| 576 | if (sbr->bwArray[ch][i] >= COEF_CONST(0.99609375)) { |
| 577 | sbr->bwArray[ch][i] = COEF_CONST(0.99609375); |
| 578 | } |
| 579 | |
| 580 | sbr->bwArray_prev[ch][i] = sbr->bwArray[ch][i]; |
| 581 | sbr->bs_invf_mode_prev[ch][i] = sbr->bs_invf_mode[ch][i]; |
| 582 | } |
| 583 | } |
| 584 | |
| 585 | static void patch_construction(sbr_info *sbr) |
| 586 | { |
| 587 | uint8_t i, k; |
| 588 | uint8_t odd, sb; |
| 589 | uint8_t msb = sbr->k0; |
| 590 | uint8_t usb = sbr->kx; |
| 591 | uint8_t goalSbTab[] = { 21, 23, 32, 43, 46, 64, 85, 93, 128, 0, 0, 0 }; |
| 592 | /* (uint8_t)(2.048e6/sbr->sample_rate + 0.5); */ |
| 593 | uint8_t goalSb = goalSbTab[get_sr_index(sbr->sample_rate)]; |
| 594 | |
| 595 | sbr->noPatches = 0; |
| 596 | |
| 597 | if (goalSb < (sbr->kx + sbr->M)) { |
| 598 | for (i = 0, k = 0; sbr->f_master[i] < goalSb; i++) { |
| 599 | k = i + 1; |
| 600 | } |
| 601 | } else { |
| 602 | k = sbr->N_master; |
| 603 | } |
| 604 | |
| 605 | if (sbr->N_master == 0) { |
| 606 | sbr->noPatches = 0; |
| 607 | sbr->patchNoSubbands[0] = 0; |
| 608 | sbr->patchStartSubband[0] = 0; |
| 609 | |
| 610 | return; |
| 611 | } |
| 612 | |
| 613 | do { |
| 614 | uint8_t j = k + 1; |
| 615 | |
| 616 | do { |
yuliang.hu | 77fab5b | 2024-07-19 18:32:11 +0800 | [diff] [blame^] | 617 | /*coverity[INTEGER_OVERFLOW]:As expected*/ |
xingri.gao | c18d447 | 2023-02-28 02:51:02 +0000 | [diff] [blame] | 618 | j--; |
yuliang.hu | 77fab5b | 2024-07-19 18:32:11 +0800 | [diff] [blame^] | 619 | /*coverity[INTEGER_OVERFLOW]:As expected*/ |
xingri.gao | c18d447 | 2023-02-28 02:51:02 +0000 | [diff] [blame] | 620 | sb = sbr->f_master[j]; |
| 621 | odd = (sb - 2 + sbr->k0) % 2; |
| 622 | } while (sb > (sbr->k0 - 1 + msb - odd)); |
| 623 | |
| 624 | sbr->patchNoSubbands[sbr->noPatches] = max(sb - usb, 0); |
| 625 | sbr->patchStartSubband[sbr->noPatches] = sbr->k0 - odd - |
| 626 | sbr->patchNoSubbands[sbr->noPatches]; |
| 627 | |
| 628 | if (sbr->patchNoSubbands[sbr->noPatches] > 0) { |
| 629 | usb = sb; |
| 630 | msb = sb; |
| 631 | sbr->noPatches++; |
| 632 | } else { |
| 633 | msb = sbr->kx; |
| 634 | } |
| 635 | |
| 636 | if (sbr->f_master[k] - sb < 3) { |
| 637 | k = sbr->N_master; |
| 638 | } |
| 639 | } while (sb != (sbr->kx + sbr->M)); |
| 640 | |
| 641 | if ((sbr->patchNoSubbands[sbr->noPatches - 1] < 3) && (sbr->noPatches > 1)) { |
| 642 | sbr->noPatches--; |
| 643 | } |
| 644 | |
| 645 | sbr->noPatches = min(sbr->noPatches, 5); |
| 646 | } |
| 647 | |
| 648 | #endif |